Алфавитный указатель. Лазерное излучение и его воздействие на человека

Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн l = 180…105 нм. Лазерные установки получили широкое распространение.

Лазерное излучение характеризуется монохроматичностью (излучения практически одной частоты), высокой когерентностью (сохранением фазы колебаний), чрезвычайно малой энергетической расходимостью луча и высокой концентрацией энергии излучения в луче.

Биологические эффекты воздействия лазерного излучения на организм определяются механизмами взаимодействия излучения с тканями и зависят от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Различают тепловые, энергетические, фотохимические и механические (ударно-акустические) эффекты воздействия, а также прямое и отражённое (зеркальное и диффузное) излучения. Для глаз, кожи и внутренних тканей организма наибольшую опасность представляет энергонасыщенное прямое и зеркально отражённое излучения. Кроме того, наблюдаются негативные функциональные сдвиги в работе нервной и сердечно-сосудистой систем, эндокринных желез, изменяется артериальное давление, увеличивается утомляемость.

Лазерное излучение с длиной волны от 380 до 1400 нм наиболее опасно для сетчатой оболочки глаза, а излучение с длиной волны от 180 до 380 нм и свыше 1400 нм - для передних сред глаза. Повреждение кожи может быть вызвано излучением любой длины волны рассматриваемого диапазона (180…105 нм).

Ткани живого организма при малых и средних интенсивностях облучения почти непроницаемы для лазерного излучения. Поэтому поверхностные (кожные) покровы оказываются наиболее подверженными его воздействию. Степень этого воздействия определяется длиной волны и интенсивностью излучения.

При больших интенсивностях лазерного облучения возможны повреждения не только кожи, но и внутренних тканей и органов. Эти повреждения имеют характер отёков, кровоизлияний, омертвения тканей, а также свёртывания или распада крови. В таких случаях повреждения кожи оказываются относительно менее выраженными, чем изменения во внутренних тканях, а в жировых тканях вообще не отмечено каких-либо патологических изменений.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм, условно подразделяют на группы:

а) первичные эффекты - органические изменения, возникающие непосредственно в облучаемых живых тканях (прямое облучение);

б) вторичные эффекты - неспецифические изменения, возникающие в организме в ответ на облучение (длительное облучение диффузно отражённым излучением).

При эксплуатации лазерных установок на человека могут воздействовать следующие опасные и вредные факторы, обусловленные как самим лазерным излучением, так и спецификой его формирования:

  • лазерное излучение (прямое, отражённое, рассеянное);
  • сопутствующее работе установки ультрафиолетовое, видимое и инфракрасное излучения структурных компонентов;
  • высокое напряжение в цепях управления и электропитания;
  • ЭМП промышленной частоты и радиочастотного диапазона;
  • рентгеновское излучение от газоразрядных трубок и элементов, работающих при анодном напряжении более 5 кВ;
  • шум и вибрация;
  • токсичные газы и пары, образующиеся в элементах лазеров и при взаимодействии луча со средой;
  • продукты взаимодействия лазерного излучения с обрабатываемыми материалами;
  • повышенная температура поверхностей лазерного изделия и в зоне облучения;
  • опасность взрыва в системах накачки лазеров;
  • возможность взрыва и пожара при взаимодействии луча с горючим материалом.

По степени опасности излучения для биологических структур человека лазеры подразделяются на четыре класса.

К лазерам 1 класса относят полностью безопасные лазеры. Их излучение не представляет опасности для глаз и кожи.

Лазеры 2 класса - это лазеры, луч которых представляет опасность при облучении кожи или глаз человека. Однако диффузно отражённое излучение безопасно как для кожи, так и для глаз.

Лазеры 3 класса представляют опасность при облучении глаз и кожи прямым, зеркально отражённым излучением. Диффузно отражённое излучение опасно для глаз на расстоянии 10 см от диффузно отражающей поверхности, но безопасно для кожи.

У лазеров 4 класса диффузно отражённое излучение на расстоянии 10 см от диффузно отражающей поверхности представляет опасность для глаз и кожи.

Лазеры классифицирует изготовитель по выходным характеристикам излучения.

При эксплуатации установок 2-4 классов следует предусматривать мероприятия по лазерной безопасности, дозиметрический контроль лазерного излучения, санитарно-гигиенические мероприятия и медицинский контроль.

Лазерная безопасность - это совокупность технических, санитарно-гигиенических, лечебно-профилактических и организационных мероприятий, обеспечивающих безопасные и безвредные условия труда при эксплуатации лазерных установок.

Нормирование лазерного излучения осуществляется по предельно допустимым уровням облучения (ПДУ) согласно «Санитарным нормам и правилам устройства и эксплуатации лазеров» № 5804-91 . ПДУ излучения при однократном воздействии могут привести к незначительной вероятности возникновения обратимых отклонений в организме работающего. ПДУ излучения при хроническом воздействии не приводят к отклонению в состоянии здоровья человека как в процессе работы, так и в отдалённые сроки жизни настоящего и последующих поколений.

Нормируемыми параметрами являются облучённость Е, энергетическая экспозиция Н, энергия W и мощность Р излучения.

Облучённость - это отношение потока излучения, падающего на малый участок поверхности, к площади этого участка, Вт/м2.

Энергетическая экспозиция определяется интегралом облучённости по времени, Дж/м2.

ПДУ лазерного излучения устанавливаются для трёх диапазонов длин волн (180…380, 381…1400, 1401…105 нм) и случаев облучения: однократного (с временем воздействия до одной смены), сериями импульсов и хронического (систематически повторяющегося). Кроме того, при нормировании учитывают объект облучения (глаза, кожа, глаза и кожа одновременно).

При использовании лазеров в театрально-зрелищных мероприятиях, для демонстрации в учебных заведениях, для подсветки и других целей в медицинских приборах, не связанных непосредственно с лечебным действием излучения, ПДУ для всех облучаемых устанавливаются в соответствии с нормами для хронического облучения.

К лазерным изделиям с учётом их классов опасности предъявляются различные требования. Например, лазеры 3 и 4 класса должны содержать дозиметрическую аппаратуру, а их конструкция должна

обеспечивать возможность дистанционного управления. Лазерные изделия медицинского назначения должны быть оборудованы средствами для измерения уровня излучения, воздействующего на пациента и персонал. Лазеры 3 и 4 классов запрещено использовать в театрально-зрелищных мероприятиях, в учебных заведениях и на открытых пространствах. Класс лазерного изделия учитывается в требованиях по его эксплуатации.

Лазерные изделия и зоны распространения лазерного излучения должны обозначаться знаками лазерной опасности с пояснительными надписями, зависящими от класса лазера.

Безопасность при работе с открытыми лазерными изделиями обеспечивается путём применения СИЗ. Безопасность при использовании лазеров в демонстрационных целях, в театрально-зрелищных мероприятиях и на открытом пространстве обеспечивается организационно-техническими мероприятиями (разработка схемы размещения лазеров, учёт траектории лазерных лучей, строгий контроль за соблюдением правил и др.).

При использовании очков для защиты от лазерного излучения уровни освещённости рабочих мест должны быть повышены на одну ступень согласно СНиП 23-05-95.

Средства защиты (коллективные и индивидуальные) применяются для снижения уровней лазерного излучения, действующего на человека, до значений ниже ПДУ. Выбор средств защиты осуществляется с учётом параметров лазерного излучения и особенностей эксплуатации. СИЗ от лазерного излучения включают в себя средства защиты глаз и лица (защитные очки, выбираемые с учётом длины волны излучения, щитки, насадки), средства защиты рук, специальную одежду.

Персонал, работающий с лазерными изделиями, должен проходить предварительные и периодические (раз в год) медицинские осмотры. К работе с лазерами допускаются лица, достигшие 18 лет и не имеющие медицинских противопоказаний.

Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.

Что такое лазер?

Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».

Термин «радиация» часто понимается неправильно, потому что его также используют при описании В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.

Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).

Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.

Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.

Электромагнитный спектр

Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.

Наибольшую частоту имеют и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.

воздействие на человека

Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.

Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.

Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях - помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение - инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Рентгеновские лучи

Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого - мощные с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на в том числе для обеспечения надлежащего экранирования.

Классификация

В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.

Безопасные устройства

Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.

Условно безопасные устройства

Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.

Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.

Опасные лазеры

К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1-5 мВт, некоторые лазерные указатели и строительные уровни.

Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.

Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Защитные очки

При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.

Факторы, которые следует учитывать при выборе защитных очков:

  • длина волны или область спектра излучения;
  • оптическая плотность при определенной длине волны;
  • максимальная освещённость (Вт/см 2) или мощность пучка (Вт);
  • тип лазерной системы;
  • режим мощности - импульсное лазерное излучение или непрерывный режим;
  • возможности отражения - зеркального и диффузного;
  • поле зрения;
  • наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
  • комфорт;
  • наличие вентиляционных отверстий, предотвращающих запотевание;
  • влияние на цветовое зрение;
  • ударопрочность;
  • возможность выполнения необходимых задач.

Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.

Лазерное излучение в медицине представляет собой вынужденную или стимулированную волну оптического диапазона длиной от 10 нм до 1000 мкм (1 мкм=1000 нм).

Лазерное излучение имеет :
- когерентность - согласованное протекание во времени нескольких волновых процессов одной частоты;
- монохроматичность - одна длина волны;
- поляризованность - упорядоченность ориентации вектора напряженности электромагнитного поля волны в плоскости, перпендикулярной ее распространению.

Физическое и физиологическое действие лазерного излучения

Лазерное излучение (ЛИ) обладает фотобиологической активностью. Биофизические и биохимические реакции тканей на ЛИ различны и зависят от диапазона, длины волны и энергии фотона излучения:

ИК-излучение (1000 мкм - 760 нм, энергия фотонов 1-1,5 ЭВ) проникает на глубину 40-70 мм, вызывает колебательные процессы - тепловое действие;
- видимое излучение (760-400 нм, энергия фотонов 2,0-3,1 ЭВ) проникает на глубину 0,5-25 мм, вызывает диссоциацию молекул и активацию фотохимических реакций;
- УФ-излучение (300-100 нм, энергия фотонов 3,2-12.4 ЭВ) проникает на глубину 0,1-0,2 мм, вызывает диссоциацию и ионизацию молекул -фотохимическое действие.

Физиологическое действие низкоинтенсивного лазерного излучения (НИЛИ) реализуется нервным и гуморальным путем :

Изменение в тканях биофизических и химических процессов;
- изменение обменных процессов;
- изменение метаболизма (биоактивация);
- морфологические и функциональные изменения в нервной ткани;
- стимуляция сердечно-сосудистой системы;
- стимуляция микроциркуляции;
- повышение биологической активности клеточных и тканевых элементов кожи, активизирует внутриклеточные процессы в мышцах, окислительно-восстановительные процессы, образование миофибрилл;
- повышает устойчивость организма.

Высокоинтенсивное лазерное излучение (10,6 и 9,6 мкм) вызывает :

Термический ожог ткани;
- коагуляцию биологических тканей;
- обугливание, сгорание, испарение.

Лечебное действие низкоинтенсивного лазера (НИЛИ)

Противовоспалительное, снижение отечности ткани;
- аналгезирующее;
- стимуляция репаративных процессов;
- рефлексогенное воздействие - стимуляция физиологических функций;
- генерализованное воздействие - стимуляция иммунного ответа.

Лечебное действие высокоинтенсивного лазерного излучения

Антисептическое действие, образование коагуляционной пленки, защитный барьер от токсических агентов;
- резание тканей (лазерный скальпель);
- сварка металлических протезов, ортодонтических аппаратов.

Показания НИЛИ

Острые и хронические воспалительные процессы;
- травма мягких тканей;
- ожог и отморожение;
- кожные заболевания;
- заболевания периферической нервной системы;
- заболевания опорно-двигательного аппарата;
- сердечно-сосудистые заболевания;
- заболевания органов дыхания;
- заболевания желудочно-кишечного тракта;
- заболевания мочеполовой системы;
- заболевания уха, горла, носа;
- нарушения иммунного статуса.

Показания к лазерному излучению в стоматологии

Заболевания слизистой оболочки полости рта;
- заболевания пародонта;
- некариозные поражения твердых тканей зубов и кариес;
- пульпит, периодонтит;
- воспалительный процесс и травма челюстно-лицевой области;
- заболевания ВНЧС;
- лицевые боли.

Противопоказания

Опухоли доброкачественные и злокачественные;
- беременность до 3-х месяцев;
- тиреотоксикоз, диабет 1 типа, болезни крови, недостаточность функции дыхания, почек, печени, кровообращения;
- лихорадочные состояния;
- психические заболевания;
- наличие имплантированного водителя ритма;
- судорожные состояния;
- индивидуальная непереносимость фактора.

Аппаратура

Лазеры - техническое устройство, испускающее излучение в узком оптическом диапазоне. Современные лазеры классифицируются :

По активному веществу (источник индуцированного излучения) -твердотельные, жидкостные, газовые и полупроводниковые;
- по длине волны и излучения - инфракрасные, видимые и ультрафиолетовые;
- по интенсивности излучения - низкоинтенсивные и высокоинтенсивные;
- по режиму генерации излучения - импульсный и непрерывный.

Аппараты комплектуются излучающими головками и специализированными насадками - стоматологические, зеркальные, акупунктурные, магнитные и др., обеспечивающие эффективность проводимого лечения. Сочетанное использование лазерного излучения и постоянного магнитного поля усиливает лечебный эффект. Серийно производятся в основном три вида лазерной терапевтической аппаратуры:

1) на базе гелий-неоновых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,63 мкм и выходной мощностью 1-200 мВт:

УЛФ-01, «Ягода»
- АФЛ-1, АФЛ-2
- ШАТЛ-1
- АЛТМ-01
- ФАЛМ-1
- «Платан-М1»
- «Атолл»
- АЛОК-1 - аппарат лазерного облучения крови

2) на базе полупроводниковых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,67-1,3 мкм и выходной мощностью 1-50 мВт:

АЛТП-1, АЛТП-2
- «Изель»
- «Мазик»
- «Вита»
- «Колокольчик»

3) на базе полупроводниковых лазеров, работающих в импульсном режиме генерации излучения с длиной волны 0,8-0,9 мкм, мощностью импульса 2-15 Вт:

- "Узор", "Узор-2К"
- "Лазурит-ЗМ"
- "Люзар-МП"
- "Нега"
- "Азор-2К"
- "Эффект"

Аппараты для магнитолазерной терапии:

- "Млада"
- АМЛТ-01
- "Светоч-1"
- "Лазурь"
- "Эрга"
- МИЛТА - магнито-инфракрасный

Техника и методика лазерного излучения

Воздействие ЛИ проводят на очаг поражения или органа, сегментарно-метамерной зоны (накожно), биологически активной точки. При лечении глубокого кариеса и пульпита биологическим методом облучение проводят в области дна кариозной полости и шейки зуба; периодонтита - световод вводят в корневой канал, предварительно механически и медикаментозно обработанный, и продвигают до верхушки корня зуба.

Методика проведения лазерного облучения - стабильная, стабильно-сканирующая или сканирующая, контактная или дистанционная.

Дозирование

Ответные реакции на ЛИ зависят от параметров дозирования:

Длина волны;
- методика;
- режим работы - непрерывный или импульсный;
- интенсивность, плотность мощности (ПМ): низкоинтенсивное ЛИ -мягкое (1-2 мВт) применяют для воздействия на рефлексогенные зоны; среднее (2-30 мВт) и жесткое (30-500 мВт) - на область патологического очага;
- время воздействия на одно поле - 1-5 мин, суммарное время не более 15 мин. ежедневно или через день;
- курс лечения 3-10 процедур, повторный через 1-2 месяца.

Техника безопасности

Глаза врача и пациента защищают очками СЗС-22, СЗО-33;
- нельзя смотреть на источник излучения;
- стены кабинета должны быть матовыми;
- нажимать на кнопку «пуск» после установки излучателя на патологический очаг.

Лазерное излучение

Лазерное излучение: l = 0,2 - 1000 мкм.

Осн. источник - оптический квантовый генератор (лазер).Особенности лазерного излучения - монохроматичность; острая направленность пучка; когкрентность.Свойства лазерного излучения: высокая плотность энергии: 1010-1012 Дж/см2, высокая плотность мощности: 1020-1022 Вт/см2.

По виду излучение лазерное излучение подразд-ся:

Прямое излучение; рассеяное; зеркально-отраженное; диффузное.

Биологические действия лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области:

Ультрафиолетовая 0.2-0.4 мкм

Видимая 0.4-0.75 мкм

Инфракрасная:

a) ближняя 0.75-1

b) дальняя свыше 1.0

Вредные воздействия лазерного излучения.

1)термические воздевия

2)энергетические воздействия (+ мощность)

3)фотохимические воздействия

4)механическое воздействие(колебания типа ультразвуковых в облученном организме)

5)электростри (деформация молекул в поле лазерного излучения)

6)образование в пределах клетках микроволнового электромагнитного поля

Влияние лазерного излучения на живые организмы, в том числе и организм человека, а также на окружающую среду, может быть как положительным, так и отрицательным.

Давайте сначала поговорим о положительном влиянии лазерного излучения.
На сегодняшний день во многих странах мира проходит активное внедрение лазерного излучения в практической медицине и в различных биологических исследованиях. Уникальные свойства лазерного луча позволяют использовать его в самых разнообразных областях: хирургии, терапии и медицинской диагностике. Опытным путем была доказана эффективность лазерного излучения ультрафиолетового, инфракрасного и видимого спектров для применения на небольшой пораженный участок и для воздействия на организм в целом.

Влияние лазерного излучения низкой интенсивности приводит к значительному уменьшению острых воспалительных процессов, стимулирует восстановительные процессы в организме, нормализует микроциркуляцию тканей, повышает общий иммунитет и устойчивость организма к различным заболеваниям.
На сегодняшний день доказано, что для низкоинтенсивного излучения характерно явно выраженное терапевтическое воздействие.

Лазеротерапией называется способ лечения, который основывается на использовании световой энергии лазерного излучения в медицинских целях.
Положительное влияние лазерного излучения на суставы заключается в том, что наблюдается перестройка субхондральной костной пластинки, нормализуется кровообращение в эндоосте и хрящ перестраивается в фиброзноволокнистый.

При влиянии лазерного излучения на кровь наблюдается улучшение реологических показателей крови, нормализуется кислородное снабжение тканей, меньше проявляется ишемия в тканях организма, нормализуется уровень холестерина, триглицеридов, сахара, приостанавливается высвобождение различных медиаторов воспаления, повышается общий иммунитет организма.

Что касается отрицательного влияния лазерного излучения на организм человека, то тут страдают, прежде всего, глаза. Даже лазеры очень маленькой мощности, составляющей всего лишь несколько милливатт, могут причинить вред зрению. Для длин волн от 400 до 700 нм, которые являются видимыми, имеют высокую степень пропускания и могут фокусироваться хрусталиком, попадание лазерного излучения в глаз, даже на пару секунд, вызвать частичную, а в некоторых случаях и полную потерю зрения. Лазеры высокой мощности могут даже повреждать внешние кожные покровы.

Влияние лазерного излучения особенно опасно для тканей, поглощающая способность которых максимальна. Глаз является наиболее уязвимым органом в этом плане. Причиной этого является незащищенность роговицы и хрусталика глаза, а также умение оптической системы глаза значительно увеличивать мощность лазерного излучения ближнего инфракрасного и видимого диапазонов, расположенных на глазном дне.

При поражении глаза лазерным излучением возникает боль, спазм век, текут слезы, отекают веки и глазное яблоко. В отдельных случаях наблюдается помутнение сетчатки и кровоизлияние. Клетки сетчатки после подобного повреждения уже не восстанавливаются.

Наши лучшие специалисты подробно объяснят вам, как уберечься от отрицательного влияния лазерного излучения и получить максимальную пользу от положительного влияния лазерного излучения

Лазерные излучения, их роль в процессах жизнедеятельности

В связи с широким применением лазерных источников излучения в научных исследованиях, промышленности, медицинский связи и др. возникает необходимость сохранения здоровья людей эксплуатирующих различные лазерные установки.

Лазер источник когерентного излучения, то есть согласованого во времени и пространстве движения фотонов в виде выделенного луча. Световая интенсивность лазерного луча в точке может быть больше, чем интенсивность Солнца. В соответствии с использованием различных материалов в качестве активной среды лазеры подразделяют на твердотелые, газовые, полупроводниковые, жидкостные на красителях, химические.

Действие излучения лазеров представляет опасность больше всего для органов зрения и кожного покрова. Характер воздействия на зрительный аппарат и степень поражающего действия лазера зависят от плотности энергии излучения, длины волны излучения (импульсное или непрерывное). Характер повреждения кожи зависит от цвета кожи, например пигментированная кожа значительно сильнее поглощает лазерное излучение, чем не пигментированная. Светлая кожа отражает до 40 % падающего на нее излучения. При действии лазерного излучения обнаружен ряд нежелательных изменений со стороны органов дыхания, пищеварения, сердечнососудистой и эндокринной систем. В некоторых случаях эти общие клинические симптомы носят довольно стойкий характер, являясь результатом влияния на нервную систему.

Рассмотрим действие наиболее биологически опасных спектральных диапазонов лазерного облучения. В инфракрасной области энергия наиболее «коротких» волн (0,7-1,3 мкм) может проникать на сравнительно большую глубину в кожу и прозрачные среды глаза. Глубина проникновения зависит от длины волны падающего излучения. Участок высокой прозрачности на длинах волн от 0,75 до 1,3 мкм имеет максимум прозрачности в районе 1,1 мкм. На этой длине волны 20 % энергии, падающей на поверхностный слой кожи, проникает в кожу на глубину до 5 мм. При этом в сильно пигментированной коже глубина проникновения может быть еще больше. И тем не менее кожа человека достаточно хорошо противодействует инфракрасному излучению, так как она способна рассеивать тепло благодаря кровообращению и понижать температуру ткани вследствие испарения влаги с поверхности.

Значительно труднее от инфракрасного облучения защитить глаза, в них тепло практически не рассеивается, и хрусталик, фокусирующий излучение на сетчатке, усиливает эффект биологического воздействия. Все это заставляет при работе с лазерами особое внимание обращать на защиту глаз. Роговая оболочка глаза прозрачна для излучения в интервале длин волн 0,75-1,3 мкм и становится практически непрозрачной только для длин волн более 2 мкм.

Степень теплового поражения роговицы зависит от поглошенной дозы облучения, причем травмируется главным образом поверхностный, тонкий слой. Если в интервале волн 1,2-1,7 мкм величина энергии облучения превышает минимальную дозу облучения то может произойти полное разрушение защитного эпителиьного слоя. Ясно, что подобное перерождение тканей в области, положенной непосредственно за зрачком, серьезно сказываетл на состоянии органа зрения.

Радужная оболочка, отличающаяся высокой степенью пигментации, поглощает излучение практически всего инфракрасного диапазона. Особенно сильно подвержена она действию излучения длиной волны 0,8-1,3 мкм, поскольку излучение почти не задерживается роговицей и водянистой жидкостью передней камеры глаза.

Минимальной величиной плотности энергии облучения в интервале волн 0,8-1,1 мкм, способной вызвать поражение радужной оболочки, считают 4,2 Дж/см2. Одновременное поражение росовой и радужной оболочек всегда носит острый характер, а поэтому оно наиболее опасно.

Поглощение средами глаза энергии излучения в инфракрасной области, падающей на роговую оболочку, растет с увеличением длины волны. При длинах волн 1,4-1,9 мкм роговица и передняя камера глаза поглощают практически все падающее излучение, а при длинах волн выше 1,9 мкм роговица становится единственным поглотителем энергии излучения.

Развитие лазерной техники заставило начать проводить исследования по определению предельно допустимых уровней облучения лазера.
Воздействие лазерного излучения на кожу человека является в основном тепловым. В качестве ориентировочной безопасной дозы для кожи рекомендуется считать плотность мощности 100 мВт/см2. Механизм теплового воздействия хорошо изучен. Несколько сложнее установить предельно допустимые уровни лазерного облучения глаз. Широкое использование лазеров с выходными параметрами, значительно отличающимися от параметров природных источников света, создает опасность для органа зрения человека.

При оценке допустимых уровней лазерной энергии необходимо учитывать суммарный эффект, производимый на прозрачные среды глаза, сетчатку и сосудистую оболочку. Оценим действие лазерного излучения на сетчатую оболочку глаза.

Размер зрачка в значительной мере определяет количество энергии излучения, попадающей в глаз и, следовательно, достигающей сетчатки. Для глаза, адаптированного к темноте, диаметр зрачка колеблется от 2 до 8 мм; при дневном свете - 2-3 мм, при взгляде на Солнце зрачок сужается до 1,6 мм в диаметре. Величина Поступающей внутрь световой энергии пропорциональна площади зрачка. Следовательно, суженный зрачок пропускает свето» поток в 15-25 раз меньше, чем зрачок расширенный. Площадь изображения источника излучения на сетчатке зависит от его v Ь лового размера, определяемого в основном расстоянием до исто ника. Для большинства неточечных источников размер изображения на сетчатке вычисляется по законам геометрической оптики зная эффективное фокусное расстояние нормального расслабленного глаза, можно найти размер изображения источника лазерного излучения на сетчатке в том случае, если известны расстояние до источника и линейный размер источника излучения.

Электромагнитное излучение как совокупность электрического и магнитного полей является одним из основных факторов влияния окружающей среды. Электрическое и магнитное поля отдельно не существуют, и их взаимные преобразования обусловливают возникновение единого электромагнитного поля, распространяющегося в окружающей среде в виде электромагнитных волн.

Этиология

К основным показателям электромагнитного излучения (ЭМИ) относятся частота колебаний и длина волны. Частота колебаний измеряется в герцах (1 Гц - одно колебание в 1 с), а длина волны - в метрах (м). Производными этих единиц соответственно являются килогерц (1 кГц = 103 Гц), мегагерц (1 мГц = 106 Гц), а также километр (км), сантиметр (см) и др. По частоте колебаний электромагнитные волны делятся на диапазоны низких (НЧ), средних (СЧ), высоких (ВЧ), ультравысоких (УВЧ), сверхвысоких (СВЧ) частот.

Единицей измерения плотности потока энергии является 1 Вт на 1 квадратный метр (Вт/м2). ПДУ плотности потока энергии облучения в диапазоне низких частот при облучении на протяжении всего рабочего дня составляет 0,1 Вт/м2, не более 2 ч - 1 Вт/м2, не более 15-20 мин - 10 Вт/м2 при условии обязательного применения защитных очков.

Источниками излучения радиоволн служат ламповые генераторы, превращающие энергию постоянного тока в энергию переменного тока высокой частоты.

Электромагнитные волны разных частотных диапазонов широко применяются в промышленности, науке, технике, медицине, радиолокации, радиометеорологии, радиоастрономии, радионавигации, космических исследованиях, ядерной физике и других направлениях деятельности человека.

Профессиональные заболевания, вызванные влиянием электромагнитного поля, чаще всего развиваются у работников радиовещания, телевидения, связи, медицинских отраслей, у лиц, выполняющих работы, связанные с термической обработкой металлов, дерева и других материалов, нагреванием и свариванием диэлектриков.

В условиях производства значительное количество работников может также подвергаться хроническому влиянию электромагнитного излучения малой интенсивности.

Электромагнитное излучение

Индукционное нагревание металлов и полупроводников осуществляется в основном магнитным полем диапазонов ВЧ и УВЧ. ВЧ и УВЧ оборудование используется: для сушки разных материалов (дерева, бумаги, кожи), нагревания пластмассы, сварки синтетических материалов (изготовление обложек для книг, папок, пакетов, игрушек), стерилизации продуктов.

Особенно широко применяется электромагнитное излучение ВЧ-, УВЧ- и СВЧ- диапазонов в радиосвязи и телевидении, а СВЧ-диапазона - для радиорелейной связи, радиолокации, радионавигации, радиодефектоскопии. Заслуживает внимания активное внедрение радиоизлучения в физиотерапию. Свойство радиоизлучения нагревать ткани организма используется в таких процедурах, как низкочастотная магнитотерапия (аппараты “Полюс-1”, “Полюс-101”), индуктотермия (аппараты ДК.В-2, ИКВ-4), микроволновая терапия сантиметровыми (аппараты “Луч-2”, “Луч-3”, “Луч-58”) и дециметровыми волнами (аппараты “Волна-2”, “Ранет”).

Основным источником искусственного электромагнитного излучения являются радио- и телевизионные станции, радиолокаторы, высоковольтные линии электропередач. Необходимо помнить, что наряду с радиоизлучением обслуживающий персонал нередко подвергается влиянию других вредных производственных факторов. На участках индукционного нагревания и при обработке электронных схем с применением пайки, в кабинах радиорелейных станций возможно загрязнение воздушной среды аэрозолями свинца, олова, углеводородов, оксидами азота. В кабинах радиорелейных станций, помещениях радио- и телерадиостанций, на участках индукционного нагревания отмечается высокая температура воздуха, а уровень шума может достигать 75-99 дБ. Трудовая деятельность операторов радиорелейных станций, персонала радио- и телерадиостанций сопровождается значительным нервно-эмоциональным напряжением и нагрузкой на орган зрения.

Патогенез

Механизм действия радиоизлучения на человека очень сложен и до конца не изучен. Установлено, что электромагнитное излучение оказывает на биологические объекты радиоволновое и тепловое действие. Тепловое действие микроволн сводится к тому, что при каждом изменении направления электромагнитного поля возникают релаксационные колебания и перемещение ионов в тканях организма, на которые направлено электромагнитное излучение, сопровождаемое выделением тепла и повышением температуры тканей. Больше всего нагреваются кровь, лимфа, паренхиматозные органы, мышцы, а также хрусталик глаза.

Таким образом, тепловое действие электромагнитного излучения основано на первичных процессах взаимодействия электромагнитных волн с молекулами тканей. Электромагнитная энергия в биологической среде превращается в кинетическую энергию поглощающих молекул, что приводит к нагреванию тканей. Степень повышения температуры тканей зависит от напряженности поля, продолжительности и частоты облучения, а также от того, какая часть тела подвергается его действию, эффективности терморегуляции и некоторых других факторов.

Механизм действия радиоизлучения небольшой (ниже тепловой) интенсивности реализуется, прежде всего, посредством его рефлекторного влияния на центральную нервную систему. Наиболее чувствительным к влиянию радиоволн является гипоталамус, где сосредоточены высшие вегетативные центры. Установлено, что парасимпатическая часть вегетативной нервной системы более чувствительна к действию радиоизлучения, чем симпатическая.

Действие радиоизлучения на головной мозг реализуется благодаря сложному комплексу биофизических, физико-химических, квантово-биологических эффектов. На клеточном и субклеточном уровне обнаруживают изменения калий-натриевого градиента в клетках, поляризацию биологических мембран с нарушением их проницаемости, деформацию структур водных систем, изменение активности ферментов, нарушение окислительных процессов и др.

Условно выделяют следующие механизмы биологического действия электромагнитного поля:

    непосредственное влияние на ткани и органы, что приводит к изменению функций центральной нервной системы и связанной с ними нейрогуморальной регуляции;

    рефлекторные изменения нейрогуморальной регуляции;

    сочетание основных механизмов патогенеза действия электромагнитного излучения с преобладающим нарушением обмена веществ, активности ферментов.

Возможно, все три механизма действенны и удельный вес каждого определяется физическими и биологическими изменениями в организме.

Кроме того, влияние электромагнитных волн вызывает дезадаптацию организма, т. е. нарушает приобретенную ранее стойкость к разным неблагоприятным факторам, а также некоторые приспособительные реакции. Влияние электромагнитного поля характеризуется кумуляцией биологического эффекта. Экспериментально установлена особая чувствительность нервной и сердечно-сосудистой системы к действию электромагнитного поля, а также наличие дистрофических изменений в семенных железах и отставание в развитии у животных.

Клиническая картина влияния радиоизлучения зависит от его спектра, интенсивности и продолжительности и, возможно, от режима излучения.

Наиболее активными в биологическом смысле являются волны СВЧ-диапазона, затем УВЧ-диапазона, наименее активными - ВЧ-диапазона.

В зависимости от интенсивности и продолжительности влияния электромагнитных волн выделяют острые и хронические формы поражения организма.

    Острая форма поражения организма

Острая форма патологического влияния электромагнитного излучения имеет три степени поражения: легкую, средней степени тяжести и тяжелую. Острая форма возникает во время аварий или в случае грубого нарушения техники безопасности, т. е. в том случае, если интенсивность излучения во много раз превышает тепловой порог. Клиническая картина характеризуется высокой фебрильной температурной реакцией (39-40 °С), лейкоцитозом, общей слабостью, недомоганием, покраснением лица, потливостью, лабильностью пульса и артериального давления. Иногда возникают гипоталамические кризы симпатоадреналового характера. Также у потерпевших наблюдаются брадикардия с периодическим сердцебиением в виде приступов пароксизмальной тахикардии, головная боль, повышение артериального давления. Возникают повторные носовые кровотечения. Появляются одышка, ощущение жажды, беспокойства и страха, тревоги, боль и ломота в конечностях и мышцах, адинамия, мышечная слабость.

В результате однократного интенсивного влияния электромагнитного излучения может развиться катаракта.

После острого поражения электромагнитным излучением могут возникнуть функциональные нарушения нервной системы в виде вегетососудистой дистонии или астеноневротического синдрома. Эти состояния длятся 2-3 мес.

    Хроническая форма поражения организма

Хроническая форма поражения возникает в результате продолжительного влияния электромагнитного излучения, интенсивность которого превышает ПДУ, но находится ниже теплового порога.

Реакция-ответ организма в этом случае заключается как в адаптационной перестройке нервной и сердечно-сосудистой системы, так и в развитии кумулятивного эффекта, сопровождаемого усилением патологических реакций в организме с увеличением стажа работы. Наибольшее внимание привлекает нарушение функций нервной и сердечно-сосудистой системы. У лиц, долго работающих в условиях действия электромагнитного поля, повышается адренокортикотропная активность гипофиза, снижается активность половых желез, развиваются энзимопатия, нейроциркуляторная дистония по гипер- или гипотензивному типу, изменяется иммунобиологическая реакция организма, происходит угнетение эритроцитопоэза, возникают трофические расстройства.

Итак, хроническое влияние электромагнитных волн на организм человека приводит к возникновению:

    Астеновегетативного синдрома: головная боль, головокружение, потемнение в глазах, кратковременная потеря сознания, повышенная утомляемость, общая слабость, снижение трудоспособности, адинамия, нарушение сна, неприятные ощущения в области сердца, потливость, одышка, акроцианоз, общий гипергидроз, стойкий ярко-красный дермографизм, дрожание век и пальцев вытянутых рук, оживление сухожильных рефлексов.

    Астеноневротического синдрома: чрезмерная раздражительность, эмоциональная лабильность, резкие колебания настроения, неадекватная реакция на внешние раздражители.

    Ангиодистонического синдрома: лабильность пульса и артериального давления, сердцебиение, сужение артериол сетчатки.

    Энцефалопатии: ослабление памяти, депрессия, психические нарушения, ипохондрические состояния, навязчивые мысли об угрозе смерти.

    Диэнцефального синдрома: приступообразная интенсивная головная боль, приступы внутренней дрожи, боль в области сердца, общая слабость, тахикардия, артериальная гипертензия, повышение температуры тела, кратковременные расстройства сознания, беспокойство, чувство страха, бледность кожи.

    Миокардиодистрофии: неприятные ощущения, боль в области сердца, смещение границ сердца влево, приглушенность тонов, систолический шум на верхушке, снижение сократительной функции миокарда, нарушение проводимости и ритма сердечных сокращений, амплитуды зубца Т.

    Нейроциркуляторной дистонии по гипотоническому, а затем - по гипертоническому типу.

    Диспептического синдрома.

    Болевого синдрома.

    Синдрома функциональной недостаточности клеток печени (повышение уровня билирубина, холестерина, уменьшение содержания протромбина; диспро- теинемия, снижение альбумино-глобулинового коэффициента).

    Гипертиреоидизма.

    Гематологического синдрома: лейкопения с нейтропенией, лимфоцитоз, моноцитоз, анемия с компенсаторным ретикулоцитозом, тромбоцитопения.

    Синдрома дегенеративно-дистрофических изменений в хрусталике, катаракты: помутнение в области заднего полюса, вблизи экватора в виде белых точек, мелкой пыли, отделыудх нитей, по форме напоминающих цепочки, бляшки и пятна.

В зависимости от выраженности изменений, возникших в разных органах и системах, выделяют три стадии заболевания.

Первая (I) стадия характеризуется развитием астенического синдрома, который нередко сочетается с незначительно выраженными ваготоническими симптомами. У больных наблюдается повышение функциональной активности щитовидной железы. Эти изменения имеют функциональный характер и почти не сказываются на трудоспособности больных.

Вторая (II) стадия патологического процесса сопровождается развитием астеновегетативного синдрома со стойкой брадикардией и артериальной гипотензией. Хотя возможно возникновение и вегетососудистой дистонии с лабильностью пульса и артериального давления. В миокарде наблюдаются более глубокие дистрофические изменения; также обнаруживают изменения в периферической крови, умеренные эндокринно-обменные нарушения.

Третья (III) стадия заболевания развивается очень редко. У больных наблюдается гипоталамический синдром, симпатоадреналовые кризы приобретают стойкий характер. Пострадавшие жалуются на приступообразную головную боль, озноб, сдавливающую боль в сердце, выраженную общую слабость, артериальную гипертензию. При большой мощности электромагнитного поля может развиться энцефалопатия с психическими нарушениями, ослаблением памяти, депрессией, ипохондрическим состоянием.

Диагностика

При постановке диагноза профессионального заболевания, вызванного влиянием электромагнитного излучения, нужна детальная санитарно-гигиеническая характеристика с указанием частотного спектра колебаний, интенсивности излучения, продолжительности контакта, стажа работы во вредных условиях производства. С учетом неспецифичности проявлений этого заболевания следует исключить другие общие болезни, которые могут обусловить развитие астении, вызвать нейроциркуляторные нарушения.

Характерными признаками воздействия электромагнитного излучения на организм человека являются астенический или астеновегетативный синдром с ваготоническими нарушениями, которые в дальнейшем сменяются синдромом вегетативно-сенсорной дистонии с преобладанием симпатико-тонических реакций, возникновением эндокринно-обменных нарушений, изменений показателей крови, катаракты. Быстрое обратное течение, особенно в начальных стадиях, под влиянием лечения и в результате нормализации условий труда служит подтверждением этого диагноза.

Лечение

Лечение заболевания, вызванного влиянием электромагнитного излучения, преимущественно симптоматическое и направлено на восстановление нормального соотношения возбудительно-тормозных процессов в коре большого мозга и тонуса отделов вегетативной нервной системы, а также нормализацию кровоснабжения головного мозга.

Астенические состояния являются показанием к назначению:

    транквилизаторов (триоксазин по 0,3 г, сибазон по 5 мг 2-3 раза в сутки);

    общеукрепляющих препаратов (инъекции 5 мл 5 % раствора аскорбиновой кислоты с 20 мл 40 % раствора глюкозы внутривенно 1 раз в сутки, на курс - 15 инъекций, 1 мл 6 % раствора тиамина бромида, 1 мл 5 % раствора пиридоксина гидрохлорида внутримышечно 1 раз в сутки, на курс - 15-20 инъекций);

    тонизирующих препаратов (сапарал по 0,05 г 2-3 раза в сутки, настойка женьшеня по 25 капель 3 раза в сутки).

В случае парасимпатико-тонической направленности вегетативных нарушений применяются холинолитические препараты (эрготамина гидротартрат - беллоид, беллатаминал по 1 таблетке 2-3 раза в сутки), антигистаминные средства (димедрол по 0,05 г, супрастин по 0,025 г).

При наличии гиперкинетического синдрома (тахикардия, сердцебиение, тенденция к повышению артериального давления) назначают малые дозы адреноблокаторов: анаприлин по 0,02 г 2-3 раза в день; препараты, расширяющие сосуды и имеющие антигипертензивное действие (раунатин по 2 мг, циннаризин по 25 мг, кавинтон по 5 мг 3 раза в сутки, но-шпа или папаверина гидрохлорид по 2 мл 2 % раствора внутримышечно 1 раз в сутки на протяжении 10-15 дней).

Кроме того, назначают лечебную гимнастику, рефлексо- и психотерапию, диету с небольшой энергетической ценностью, но с высоким содержанием белков, радоновые и хвойные ванны.

Экспертиза трудоспособности

В начальной стадии заболевания трудоспособность больных не нарушена. После активного лечения таких лиц следует перевести на работу, не связанную с действием электромагнитного излучения, сроком на 1 мес. В случае благоприятного течения заболевания они могут выполнять обычную для себя работу.

Лица, перенесшие заболевание в умеренно выраженной стадии, нуждаются в лечении в условиях специализированного стационара, после чего для закрепления результатов лечения и динамического наблюдения их следует перевести на работу, не связанную с действием электромагнитного излучения, сроком на 1-2 мес. Возвращение к обычной трудовой деятельности возможно лишь при условии полного восстановления функций организма.

Если не наблюдается явного лечебного эффекта, а также в случае тяжелой стадии поражения больные нуждаются в рациональном трудоустройстве вне действия электромагнитных колебаний. Резкое снижение квалификации является основанием для направления таких работников на МСЭК и определения степени потери трудоспособности на период обретения другой профессии (1 год). При наличии катаракты дальнейшая работа, связанная с электромагнитным излучением, запрещена.

Профилактика

Для защиты от влияния энергии электромагнитного поля рекомендуются следующие методы и мероприятия: организационные, технологические, санитарно-технические, индивидуальные, лечебно-профилактические.

К основным организационным мероприятиям, позволяющим улучшить состояние окружающей среды в местах размещения источников электромагнитного излучения, относятся уменьшение продолжительности их действия и увеличение расстояния от них до работника.

Технологические мероприятия предусматривают обеспечение механизации и автоматизации производственных процессов, применение манипуляторов и дистанционного управления.

Санитарно-технические мероприятия включают экранирование всех источников электромагнитного излучения.

К средствам индивидуальной защиты относятся радиозащитная одежда, очки.

Лечебно-профилактические мероприятия состоят в проведении предварительных и периодических медицинских осмотров, во время которых важным является исследование систем организма, подвергающихся наибольшему поражению в результате воздействия электромагнитного излучения.

Профессиональные болезни, обусловленные воздействием лазерного излучения

Научно-технический прогресс ознаменовался внедрением во многих отраслях хозяйства оптических квантовых генераторов - лазеров. Диапазон применения лазеров довольно широк, а темпы внедрения чрезвычайно высоки. Термин “лазер” образован из начальных букв пяти слов словосочетания “Light amplification by stimulated emission of radiation”, что в переводе с английского означает “усиление света посредством его вынужденного излучения”.

Этиология

Излучение оптических квантовых генераторов (лазеров) является сравнительно новым фактором производственной среды. Лазеры - это качественно иные источники мощного направленного электромагнитного излучения. В результате концентрации большой энергии излучения в относительно небольшом объеме лазеры дают возможность осуществлять плавку, сварку и резку твердых металлов, образовывать высокотемпературную плазму, проводить термоядерные и инициировать химические реакции. На сегодня лазерное излучение применяется при геодезических работах, в системах передачи информации и наведения, в разных научных исследованиях по медицине, при решении сложных медико-биологических проблем, выполнении хирургических операций в онкологии, офтальмологии, дерматологии и др.

Основными физическими величинами лазерного излучения (и его единицами) являются:

    длина волны (мкм);

    мощность излучения (Вт);

    плотность потока излучения (Вт*м2);

    энергия излучения (Дж);

    плотность потока энергии (Дж*м2).

Лазерное излучение даже небольшой интенсивности за счет своих свойств, влияя на зрительный анализатор, способно совершать выраженное неблагоприятное влияние, прежде всего, на центральную нервную систему и подкорковые образования, вследствие чего происходит нарушение подвижности основных нервных процессов - возбуждения и торможения. Таким образом, реализуется рефлекторный механизм общих реакций организма, обусловленный влиянием лазерного излучения на зрительный анализатор.

Клиническая картина

Острые поражения в результате лазерного излучения характеризуются поражением кожи (эритема, ожог, глубокий некроз), ожогами сетчатки глаза (развиваются скотомы, хориоретинальные рубцы), кровоизлияниями в сетчатку, коагуляцией белков роговицы. Действие лазерного излучения на здоровую сетчатку и другие структуры глаза зависит от пигментации глазного дна и диапазона излучения. При этом видимый диапазон излучения действует преимущественно на фотосенсорный слой сетчатки, вызывая временную потерю зрения, а в случае ожога - потерю зрения в данной области зрительного пространства.

Лазерное лечение

В ультрафиолетовом диапазоне (240-450 нм) лазерного излучения энергию поглощают все белковые структуры глаза, в том числе роговица и хрусталик. В результате ожога поражению в первую очередь подвергается слизистая оболочка глаза. При высоком уровне энергии излучения коагуляция белков роговицы приводит к необратимой и полной потере зрения. В инфракрасном диапазоне (ближний и средний участки - 820-1500 нм) лазерного излучения энергию поглощают радужка, хрусталик и стекловидное тело. Радужка быстро нагревается, и происходит коагуляция белков хрусталика. Субъективно нагревание радужки обусловливает ощущение раздражения и мигательный рефлекс. При высоком уровне энергии излучения в результате температурного помутнения хрусталика наступает необратимая потеря зрения. Поражение глаз при лазерном излучении этого диапазона наступает обычно после его продолжительного действия. Диапазон ближнего участка инфракрасного спектра (1000-1600 нм) является наименее опасным для глаз, так как временные поверхностные поражения возникают даже при высоком уровне энергии излучения.

Лица, долго работающие с лазерами, жалуются на утомление глаз в конце рабочего дня, тупую или режущую боль в глазных яблоках, непереносимость яркого света, слезотечение или сухость. Острота зрения, как правило, не изменяется, но может наступить повышение порога цветораспознавания, увеличение продолжительности адаптации в темноте, иногда - сужение полей зрения.

Поражение кожи при влиянии прямого или диффузно отраженного лазерного излучения может иметь самый разнообразный характер - от эритемы до ожога. В легких случаях обнаруживают функциональные изменения активности внутрикожных ферментов, а также электропроводности кожи.

Хронические поражения характеризуются развитием:

    астенического синдрома (общая слабость, утомляемость в конце рабочего дня);

    астеновегетативного синдрома (гипергидроз, акроцианоз, стойкий красный дермографизм, усиление пиломоторного рефлекса, головная боль, нарушение сна, сердцебиение, “замирание” сердца);

    астеноневротического синдрома (раздражительность, вспыльчивость, плаксивость, невнимательность);

    ангиодистонического синдрома (лабильность, асимметрия пульса и артериального давления, нарушение ритма сердечных сокращений (чаще всего по типу синусовой брадикардии), снижение тонуса сосудов, неадекватная реакция сердечно-сосудистой системы при проведении функциональных проб);

    миокардиодистрофии (уплощенный, двухфазный или отрицательный зубец Т, уменьшение интервала P-Q, снижение и деформация желудочкового комплекса QRS)",

    болевого синдрома (кардиалгия);

    нейроциркуляторной дистонии по гипотоническому типу (нейроциркуляторного криза с сильной головной болью, головокружением, кратковременными расстройствами сознания, болью в области сердца, сердцебиением, похолоданием конечностей, потливостью);

    астенопии (резкое утомление глаз во время работы, туман перед глазами, снижение четкости зрения, тупая или режущая боль и ощущение давления в глазных яблоках, непереносимость яркого света, слезотечение или сухость глаза);

    синдрома дегенеративно-дистрофических изменений (точечные помутнения стекловидного тела и хрусталика глаза, лучевая катаракта);

    коагулопатии (умеренная тромбоцитопения, снижение уровня протромбина);

    лейкемоидного синдрома (лейкоцитоз, моноцитоз и лимфоцитопения).

Лазерное излучение при продолжительном воздействии вызывает нарушение функции нервной и сердечно-сосудистой системы, изменение гематологических, иммунологических показателей, активности некоторых ферментов и медиаторов. В большинстве случаев они объединяются в астенические и астеновегетативные синдромы, сопровождаемые компенсаторно-приспособительными реакциями. Клиническая симптоматика в данном случае не имеет специфического характера и является результатом действия комплекса неблагоприятных производственных факторов, возникающих при нарушении эксплуатации лазеров.

Диагностика профессиональных заболеваний, обусловленных влиянием лазерного излучения, основывается на результатах субъективного и объективного обследования и данных санитарно-гигиенической характеристики условий работы.

Данное заболевание может быть заподозрено при наличии очевидной связи с началом работы с лазерным оборудованием, а также при отсутствии других этиологических причин (вегетососудистой дистонии, астеновегетативного синдрома, поражения органа зрения, кожи). Детальное обследование в условиях стационара, наблюдение в процессе лечения могут подтвердить или исключить профессиональное происхождение нейродинамических и сосудистых расстройств.

Лечение

При повреждении глаз или кожи характер медицинской помощи определяется видом поражения, которое зависит от длины волны излучения. В случае воздействия ультрафиолетового излучения назначаются холодные примочки на веки. В конъюнктивальный мешок закапывают 0,25 % раствор дикаина или 2,5 % раствор новокаина. При ожоге радужки, вызванном излучением видимого или близкого инфракрасного участка спектра, в конъюнктивальный мешок закапывают 0,1 % раствор атропина сульфата, на пораженный глаз накладывают асептическую повязку, потерпевшего срочно направляют к офтальмологу.

В случае хронического влияния назначается комплексное лечение, направленное на восстановление нарушенных функций организма. В его состав входят:

    адаптогены - настои пустырника, женьшеня, китайского лимонника, элеутерококка;

    общеукрепляющие средства - раствор глюкозы с аскорбиновой кислотой, витамином В, внутривенно;

    аминазин, мепротан, триоксазин, элениум, диазепам (седуксен) в небольших дозах при невротических состояниях с признаками нарушения гипоталамических отделов головного мозга;

    кальция глюконат, глутаминовая кислота, беллатаминал (белласпон) - при выраженных симптомах нейроциркуляторной дистонии;

    физиотерапевтические процедуры (гальванический воротник, массаж, общие ванны, душ);

    высококалорийная диета с достаточным содержанием витаминов;

    рациональный режим труда и отдыха.

Экспертиза трудоспособности

Решение экспертных вопросов зависит от степени поражения того или иного органа. Если повреждена роговица, больных нужно временно отстранить от работы на период лечения (1-2 недели). Пациенты с поражением хрусталика и сетчатки нуждаются в более длительном лечении (до 1 мес.) с дальнейшим переводом (сроком до 2 мес.) на работу, не связанную с влиянием лазерного излучения. Если наблюдается прогрессирование заболевания, работника отстраняют от работы с лазерами и на период переквалификации устанавливают III группу инвалидности.

Профилактика

Во время работы с лазерами уровни вредных производственных факторов не должны превышать установленных государственными стандартами и действующей нормативно-технической документацией.

Лазеры должны быть размещены в отдельных помещениях (лазеры III- IV классов) или иметь экраны и ограждения (лазеры II-III классов). Лазерная установка должна быть оснащена экранирующими щитами, ширмами, шторами. Для защиты работников от поражения электрическим током используются дистанционное управление, блокировка; для защиты рук - хлопчатобумажные перчатки, глаз - защитные очки.

Организационные мероприятия включают внедрение рациональной организации работы с проведением регламентированных физкультурных пауз и плановой санитарно-образовательной работы среди работников лазерных лабораторий по вопросам профилактики возможной патологии.

Санитарно-технические профилактические мероприятия:

    Эксплуатация лазеров в помещениях площадью не менее 20 м2.

    Экранирование установок (щиты, ширмы, шторы), установление ограждения.

    Окрашивание стен, приборов, оборудования темной матовой краской, которая имеет минимальный коэффициент отражения.

    Предотвращение превышения уровня вредных производственных факторов, установленных государственными стандартами и действующей нормативно-технической документацией.

    Соблюдение правил техники безопасности при работе с лазерными установками.

    Защита работников (дистанционное управление, блокировка; хлопчатобумажные перчатки, защитные очки).

    Предварительный и периодический инструктаж персонала.

    Проведение постоянных исследований в области лазерной дозиметрии и обеспечение постоянного контроля уровней отраженного и рассеянного лазерного излучения.

Медико-профилактические мероприятия:

    Обязательное проведение предварительных и периодических медицинских осмотров работников, допущенных к работе с лазерами.

    Обязательное проведение витаминизации (ретинол, аскорбиновая кислота, витамины группы В) в весенне-зимние месяцы с целью профилактики возникновения профессиональной патологии.

Профессиональные болезни, обусловленные воздействием ультразвука

Ультразвук - это механические колебания упругой среды, которые отличаются от обычного звука более высокой частотой колебаний (свыше 20 кГц) и не воспринимаются ухом человека.

Этиология

Ультразвук эффективен для изготовления эмульсий из жидкостей, которые не смешиваются, ускоряет электролитические процессы в гальванотехнике. Ультразвук широко применяется в медицине, в частности в следующих направлениях:

    сварка органов в местах повреждения в эксперименте;

    изготовление фармацевтических препаратов (ускорение процессов созревания, растворения компонентов);

    диагностическая и лечебная ультразвуковая аппаратура;

    “скальпель” для вскрытия ткани на границе контакта клеточных оболочек благодаря высокочастотной энергии;

    разработка устройств по ориентации для людей с нарушениями органа зрения и т. п.

Ультразвук применяется в разных отраслях народного хозяйства: металлургии, машино- и приборостроении, радиотехнической, химической и легкой промышленности, медицине и т. п. Распространенное применение ультразвука обусловливает увеличение количества работников, находящихся под его влиянием. Основными профессиональными группами, на которые влияет ультразвук в условиях производства, являются: дефектоскописты, монтажники, операторы очистительных установок, сварщики, паяльщики, врачи и медицинские сестры, обслуживающие терапевтическую и диагностическую ультразвуковую аппаратуру, установки для хирургического вмешательства и стерилизации инструментов.

Кстати, наиболее опасно для организма человека контактное влияние ультразвука, реализующееся при удержании инструмента в процессе обработки деталей в производственных условиях и при работе с ультразвуковой диагностической аппаратурой.

Патогенез

В зависимости от интенсивности ультразвуковых волн и влияния его на живые ткани различают три вида ультразвука:

    Ультразвук малой интенсивности (до 1,5 Вт/см2), рассматриваемый в качестве физического катализатора. Он служит причиной некоторых изменений физико-химических реакций организма, ускорения обменных процессов, незначительного нагревания тканей, микромассажа и не приводит к морфологическим нарушениям внутри клеток.

    Ультразвук средней интенсивности (до 1,5-3,0 Вт/см2), обусловливающий реакцию угнетения в нервной ткани. Скорость восстановления функций зависит от интенсивности и продолжительности влияния ультразвука.

    Ультразвук большой интенсивности может послужить причиной необратимого изменения ткани, вплоть до полного ее разрушения.

Биологическое действие ультразвука заключается в нарушении:

    функционального состояния рецепторного аппарата и периферических вегетативных образований (раздражение температурных, тактильных, болевых виброрецепторов);

    перехода энергии механических колебаний в тепловую с расширением сосудов, что в дальнейшем сменяется их спазмом.

Это сопровождается усилением поглощения клетками кислорода и снижением концентрации углекислого газа, накоплением азотистых шлаков, оказывающих выраженное токсическое действие на центральную и периферическую нервную систему, вызывающих повреждение клеточных мембран.

Таким образом, ультразвуковые колебания обусловливают механический, термический и физико-химический эффект. Механизм действия ультразвука (сжатие-разрежение) обеспечивает механический эффект, в то время как переход механической энергии в тепловую, усиливающийся на границе распределения (например, твердое тело-жидкость) - термический. Особым свойством ультразвука является образование кавитации (микроскопических пузырьков), что обеспечивает его физико-химический эффект: развитие фото- и электрохимических процессов в кавитационных полостях.

Следует отметить, что длительное или периодическое, но в целом хроническое влияние на организм работников контактного ультразвука может привести сначала к функциональным, а со временем - и к органическим нарушениям центральной и периферической нервной системы, сердечно-сосудистой системы, опорно-двигательного аппарата.

Доказано, что в низких дозах ультразвук малой интенсивности дает положительный общебиологический эффект на организм, благодаря чему он применяется в терапевтической практике. Ультразвуковая энергия малой интенсивности обусловливает перестройку “внутренней” среды организма, повышает проницаемость кожи, гематоэнцефалического барьера, изменяет структуру клеточных мембран, стимулирует процессы кровоснабжения, гидролиза, гликолиза.

Клиническая картина

При систематическом влиянии ультразвука, интенсивность которого и время контакта с которым превышают ПДУ, могут возникать функциональные изменения со стороны центральной нервной, сердечнососудистой и эндокринной системы, слухового и вестибулярного анализаторов в виде астенического, астеновегетативного, астеноневротического, гипоталамического, ангиодистонического синдромов, полиневропатии, энцефалопатии, нейроциркуляторная дистония, миокардиодистрофии, синдромы дегенеративно-дистрофических изменений.

Лица, длительное время обслуживающие ультразвуковое оборудование, жалуются на головную боль, головокружение, общую слабость, быструю утомляемость, нарушение сна, раздражительность, ухудшение памяти, повышенную чувствительность к звукам, непереносимость яркого света, нередко на диспепсические расстройства.

До конца рабочего дня у таких работников возникают брадикардия и артериальная гипертензия, на ЭКГ обнаруживают брадисистолию, нарушение внутрисердечной и внутрижелудочковой проводимости. В крови - моноцитоз, эозинофилия, позже переходящая в эозинопению. Нередко наблюдаются снижение концентрации глюкозы в крови, гиперпротеинемия. Все эти проявления имеют неустойчивый характер.

В тех случаях, когда ультразвук передается не только через воздух (это касается низкочастотного ультразвука), но и контактным путем (высокочастотный ультразвук), указанная симптоматика более выражена.

При клиническом обследовании обнаруживают астеновегетативный синдром, иногда наблюдаются диэнцефальные нарушения: снижение массы тела, субфебрильная температура тела, пароксизмальные приступы по типу висцеральных кризов, повышение механической возбудимости мышц, зуд.

При длительной работе с ультразвуковыми дефектоскопами у операторов могут развиться вегетососудистые нарушения в виде ангиодистонического синдрома, вегетативного полиневрита, вегетомиофасцита рук и вегетососудистой дисфункции.

Общемозговые нарушения обычно сочетаются с симптомами вегетативного полиневрита рук разной степени выраженности, что проявляется акроцианозом, отечностью, гипергидрозом, снижением всех видов чувствительности по типу коротких или длинных перчаток.

Лечение

При наличии в клинической картине астенического синдрома больным показано назначение транквилизаторов: мепробамата по 0,2 г 1-2 раза в сутки, триоксазина по 0,3 г 2 раза в сутки. Наряду с этим рекомендуется применение аскорбиновой кислоты по 0,05 г 3 раза в сутки. Из общеукрепляющих процедур - теплый душ, хвойные ванны, прогулки перед сном.

Лицам с более выраженной симптоматикой - постоянными жалобами астенического характера, признаками нейроциркуляторной дистонии - наряду с транквилизаторами (3 раза в сутки) необходимо назначать витамины группы В (тиамин по 1 мл 6 % раствора внутримышечно, рибофлавин по 0,005-0,01 г 2-3 раза в сутки на протяжении 15 дней, кокарбоксилазу по 0,05 г одноразово внутримышечно 20-25 дней подряд).

Вегетативный полиневрит с чувствительными и трофическими нарушениями нуждается в более длительном лечении. Таким больным показаны массаж, озокеритовые аппликации, радоновые ванны в комплексе с внутривенным введением 10 мл 0,5 % раствора новокаина, всего - 15-20 инъекций. Хороший результат дает санаторно-курортное лечение.

Экспертиза трудоспособности

При наличии ранних, резко выраженных проявлений астенизации и вегетососудистых нарушений больным разрешается дальнейшая работа по специальности при условии постоянного наблюдения и амбулаторного лечения. Таким больным рекомендуется лечение в условиях санатория-профилактория. В отдельных случаях показана временная (на 1-2 мес.) трудовая деятельность, не связанная с влиянием ультразвука.