Гуморальные и клеточные факторы неспецифической резистентности. История понятия

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-1.jpg" alt=">ФАКТОРЫ и МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ Титова Татьяна Николаевна Кафедра лабораторной диагностики"> ФАКТОРЫ и МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ Титова Татьяна Николаевна Кафедра лабораторной диагностики ИПО БГМУ Уфа-2014

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-2.jpg" alt="> Для возникновения инфекционного процесса важное значение наряду со свойствами возбудителя имеет состояние макроорганизма:"> Для возникновения инфекционного процесса важное значение наряду со свойствами возбудителя имеет состояние макроорганизма: восприимчивость (чувствительность) или невосприимчивость (резистентность) к инфекции. ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ ЗАЩИТЫ ОРГАНИЗМА Гуморальные Внешние барьеры Внутренние барьеры Клеточные факторы факторы Нормальная Лимфоузлы Фагоциты Лизоцим микрофлора Белки острой фазы Кожа Тканевые, Естественные Комплемент клеточные киллеры Слизистые барьеры Интерфероны Другие цитокины

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-3.jpg" alt="> НОРМАЛЬНАЯ МИКРОФЛОРА ОРГАНИЗМА ЧЕЛОВЕКА Препятствует адгезии и колонизации поверхностей тела патогенными"> НОРМАЛЬНАЯ МИКРОФЛОРА ОРГАНИЗМА ЧЕЛОВЕКА Препятствует адгезии и колонизации поверхностей тела патогенными микроорганизмами. Защитное действие обусловлено конкуренцией за питательные вещества, изменением р. Н среды, продукцией колицинов и других активных факторов, препятствующих внедрению и размножению патогенных микроорганизмов. Способствует созреванию иммунной системы и поддержанию ее в состоянии высокой функциональной активности, так компоненты микробной клетки неспецифически стимулируют клетки иммунной системы. Пример: дисбактериозы

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-4.jpg" alt="> ВНЕШНИЕ БАРЬЕРЫ Кожа и слизистые оболочки служат барьером, препятствующим проникновению"> ВНЕШНИЕ БАРЬЕРЫ Кожа и слизистые оболочки служат барьером, препятствующим проникновению внутрь организма большинства микробов. Неспецифические механизмы Механический барьер удаление микроорганизмов с поверхности кожи. (слущивание верхних слоев эпителия) Бактерицидные свойства потовые и сальные железы (молочная и жирные кислоты, ферменты); моча и секреты слюнных и пищевари тельных желез (лизоцим). Специфические реакции Секреторные иммуноглобулины – обладают бактерицидными свойствами и активируют местные фагоцитирующие клетки

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-5.jpg" alt="> ВНУТРЕННИЕ БАРЬЕРЫ Система лимфатических сосудов и лимфатических узлов. фагоцитоз на"> ВНУТРЕННИЕ БАРЬЕРЫ Система лимфатических сосудов и лимфатических узлов. фагоцитоз на месте доставка возбудителя фагоцитами в лимфатические узлы или др. местные лимфатические образования (воспалительный процесс) распространение процесса на следующие регионарные лимфоидные образования. Гисто-гематические барьеры препятствуют проникновению возбудителей из крови в головной мозг, репродуктивную систему, глаза. Мембрана каждой клетки служит барьером для проникновения в нее посторонних частиц и молекул.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-6.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ ФАГОЦИТИРУЮЩИЕ КЛЕТКИ Защитная роль подвижных клеток крови и тканей"> КЛЕТОЧНЫЕ ФАКТОРЫ ФАГОЦИТИРУЮЩИЕ КЛЕТКИ Защитная роль подвижных клеток крови и тканей впервые обнаружена И. И. Мечниковым в 1883 г. Он назвал эти клетки фагоцитами и сформулировал основные положения фагоцитарной теории иммунитета.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-7.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ Все фагоцитирующие клетки организма, по И. И. Мечникову, "> КЛЕТОЧНЫЕ ФАКТОРЫ Все фагоцитирующие клетки организма, по И. И. Мечникову, подразделяются на микрофаги - полиморфноядерные гранулоциты крови: нейтрофилы, эозинофилы и базофилы; макрофаги (соединительной ткани, печени, легких и др.) вместе с моноцитами крови и их костномозговыми предшественниками (промоноциты и монобласты) объединены в особую систему мононуклеарных фагоцитов (СМФ).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-8.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ Микрофаги и макрофаги имеют общее миелоидное происхождение "> КЛЕТОЧНЫЕ ФАКТОРЫ Микрофаги и макрофаги имеют общее миелоидное происхождение - от полипотентной стволовой клетки, которая является единым предшественником грануло и моноцитопоэза.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-9.jpg" alt="> Происхождение микрофагов и макрофагов Стволовая "> Происхождение микрофагов и макрофагов Стволовая полипотентная Макрофаги Микрофаги клетка Периферическая Моноциты(1 -6%) Гранулоциты Клетка- кровь (60 -70% от всех предшественник лейкоцитов) миелоцитов Время циркуля- П/период 22 часа П/период 6, 5 часа ции в крови Вне кровяного Тканевые - Предшественник гранулоцитов и русла макрофаги макрофагов Монобласт Миелобласт Промоноцит Промиелоцит Моноцит Базофил Эозинофил Нейтрофил Тканевые макрофаги

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-11.jpg" alt=">Все фагоцитирующие клетки характеризуются общностью основных функций, сходством структур и метаболических"> Все фагоцитирующие клетки характеризуются общностью основных функций, сходством структур и метаболических процессов. Наружная плазматическая мембрана всех фагоцитов отличается выраженной складчатостью и несет множество специфических рецепторов и антигенных маркеров, которые постоянно обновляются. Лизосомный аппарат – высоко развит, содержит богатый арсенал ферментов. Мембраны лизосом способны к слиянию с мембранами фагосом (фагосомная вакуоль) или с наружной мембраной (секреция лизосомных ферментов во внеклеточное пространство)

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-12.jpg" alt=">Рецепторы макрофага: Int. R рецептор к гамма интерферону; Fc. R рецептор к"> Рецепторы макрофага: Int. R рецептор к гамма интерферону; Fc. R рецептор к Fc–фрагменту; C 3 R рецептор к фракции комплемента С 3; MFR маннозо фруктозный рецептор. Антиген МНС класса II

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-13.jpg" alt=">Три функци фагоцитов: Защитная - очистка организма от инфекционных агентов, продуктов"> Три функци фагоцитов: Защитная - очистка организма от инфекционных агентов, продуктов распада тканей и т. д. ; Представляющая - презентация лимфоцитам антигенных эпитопов на мембране фагоцита; Секреторная секреция лизосомных ферментов и цитокинов. МАКРОФАГ под электронным микроскопом

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-14.jpg" alt=">Стадии фагоцитоза: 1 – хемотаксис 2 – адгезия (прикрепление) 3 – эндоцитоз 4"> Стадии фагоцитоза: 1 – хемотаксис 2 – адгезия (прикрепление) 3 – эндоцитоз 4 – внутриклеточное переваривание

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-15.jpg" alt=">1. Хемотаксис целенаправленное передвижение фагоцитов в окружающей среде. Связано с наличием на"> 1. Хемотаксис целенаправленное передвижение фагоцитов в окружающей среде. Связано с наличием на мембране специфических рецепторов

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-16.jpg" alt=">2. Адгезия (прикрепление) непосредственно предшествует эндоцитозу (захвату). ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-17.jpg" alt=">3. Эндоцитоз основная физиологическая функция профессиональных фагоцитов. Различают фагоцитоз"> 3. Эндоцитоз основная физиологическая функция профессиональных фагоцитов. Различают фагоцитоз - в отношении частиц с диаметром не менее 0, 1 мкм; пиноцитоз - в отношении более мелких частиц и молекул. Механизмы: захват антигенов обтеканием их псевдоподиями без участия специфических рецепторов; маннозофукозные рецепторы распознают углеводные компоненты поверхностных структур микроорганизмов (бактерий, дрожжеподобных грибов рода Candida и др.). рецепторы для Fc фрагмента иммуноглобулинов и для СЗ фракции комплемента. Такой фагоцитоз называют иммунным (наиболее эффективный).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-18.jpg" alt=">Эндоцитоз зависит от патогенности микроорганизмов. Фагоцитируются непосредственно авирулентные или низко вирулентныебактерии (бескапсульные"> Эндоцитоз зависит от патогенности микроорганизмов. Фагоцитируются непосредственно авирулентные или низко вирулентныебактерии (бескапсульные штаммы пневмококка, штаммы стрептококка, лишенные гиалуроновой кислоты и М протеина). Фагоцитируются только после опсонизации комплементом и/или антителами большинство бактерий, наделенных факторами агрессивности (стафилококки - А протеином, кишечные палочки - выраженным капсульным антигеном, сальмонеллы - Vi антигеном, и др.).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-19.jpg" alt=">Активность фагоцитов характеризуется фагоцитарными показателями и опсоно фагоцитарным индексом. Фагоцитарные показатели число бактерий,"> Активность фагоцитов характеризуется фагоцитарными показателями и опсоно фагоцитарным индексом. Фагоцитарные показатели число бактерий, поглощенных или «переваренных» одним фагоцитом в единицу времени. Опсоно-фагоцитарный индекс отношение фагоцитарных показателей, полученных с иммунной (содержащей опсонины) и неиммунной сывороткой. Эти показатели используются для определения иммунного статуса индивидуума, для подтверждения факта заболевания (серодиагностика).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-20.jpg" alt=">4. Внутриклеточное переваривание начинается по мере поглощения бактерий или других объектов. Происходит в фаголизосомах"> 4. Внутриклеточное переваривание начинается по мере поглощения бактерий или других объектов. Происходит в фаголизосомах (слияние лизосом с фагосомами). Осуществление механизмов микробоцидности фагоцитов. Кислороднезависимые механизмы опосредованы ферментами (в т. ч. лизоцим), попадающими в фагосому в результате ее слияния с лизосомами. Кислородзависимые механизмы связаны с «окислительным взрывом» . выбросом биологически активных продуктов восстановления кислорода (Н 2 О 2, ОН).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-22.jpg" alt=">Механизмы выживания фагоцитированных микроорганизмов: способность препятствовать слиянию лизосом с фагосомами (токсоплазмы,"> Механизмы выживания фагоцитированных микроорганизмов: способность препятствовать слиянию лизосом с фагосомами (токсоплазмы, микобактерии туберкулеза); устойчивость к действию лизосомных ферментов (гонококки, стафилококки, стрептококки группы А и др.); способность после эндоцитоза покидать фагосому, избегая действия микробоцидных факторов, и длительно персистировать в цитоплазме фагоцитов (риккетсии и др.).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-23.jpg" alt=">Презентативная (представляющая) функция макрофагов состоит в фиксации на наружной мембране"> Презентативная (представляющая) функция макрофагов состоит в фиксации на наружной мембране антигенных эпитопов микроорганизмов. В таком виде они бывают представлены макрофагами для их специфического распознавания клетками иммунной системы - Т лимфоцитами

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-25.jpg" alt=">В тех случаях, когда воспалительной реакции с участием фагоцитов оказывается недостаточно, секреторные продукты"> В тех случаях, когда воспалительной реакции с участием фагоцитов оказывается недостаточно, секреторные продукты макрофагов обеспечивают вовлечение лимфоцитов и индукцию специфического иммунного ответа.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-27.jpg" alt="> Естественные клетки-киллеры (ЕК) Морфология ЕК Большие гранулосодержащие лимфоциты. "> Естественные клетки-киллеры (ЕК) Морфология ЕК Большие гранулосодержащие лимфоциты. Содержат азурофильные цитоплазматические гранулы (аналоги лизосом фагоцитов) Фагоцитарной функцией ЕК не обладают. Неспецифический характер цитотоксического действия отличает эти клетки от антигенспецифических Т киллеров. Среди лейкоцитов крови человека ЕК составляют от 2 до 12%. Ген E 4 bp 4 отвечает за производство клеток киллеров в костном мозге. (Результаты исследования опубликованы в Nature Immunology)

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-28.jpg" alt="> Гуморальные факторы Комплемент сложный комплекс белков сыворотки крови. "> Гуморальные факторы Комплемент сложный комплекс белков сыворотки крови. Находятся обычно в неактивном состоянии. Активируется при соединении антигена с антителом или при агрегации антигена. В состав входят 20 белков. Основные компоненты комплемента: С 1, С 2, СЗ, С 4. . . С 9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам (5 10 % от всех белков крови) Отличаются между собой по ряду физико химических свойств.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-29.jpg" alt=">Функции комплемента: участвует в лизисе микробных и других клеток (цитотоксическое"> Функции комплемента: участвует в лизисе микробных и других клеток (цитотоксическое действие); принимает участие в анафилаксии; участвует в фагоцитозе. Комплемент является компонентом многих иммунолитических реакций, направленных на освобождение организма от микробов и других чужеродных клеток и антигенов (например, опухолевых клеток, трансплантата).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-30.jpg" alt="> Механизм активации комплемента представляет собой каскад ферментативных протеолитических реакций, в результате которого"> Механизм активации комплемента представляет собой каскад ферментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стенку бактерии и других клеток. Три пути активации комплемента: классический, альтернативный, лектиновый.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-31.jpg" alt="> Классический путь Комплемент активируется комплексом антиген антитело. Для этого достаточно участия в связывании"> Классический путь Комплемент активируется комплексом антиген антитело. Для этого достаточно участия в связывании антигена одной молекулы Ig. M или двух молекул Ig. G. Этапы активации комплемента. 1) Присоединение к комплексу АГ+АТ компонента С 1; 2) Последовательная активация «ранних» компонентов комплемента: С 4, С 2, СЗ. Эта реакция имеет характер усиливающегося каскада (одна молекула предыдущего компонента активирует несколько молекул последующего); 3) «Ранний» компонент комплемента СЗ активирует компонент С 5, который обладает свойством прикрепляться к мембране клетки. 4) На компоненте С 5 путем последовательного присоединения «поздних» компонентов С 6, С 7, С 8, С 9 образуется литический (мембраноатакующий комплекс), который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-32.jpg" alt=">Классический путь внедрение комплекса в мембрану">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-33.jpg" alt=">Классический путь внедрение комплекса в мембрану клетки ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-34.jpg" alt=">Альтернативный путь Проходит без участия антител. Характерен для защиты от грамотрицательных микробов. Каскадная"> Альтернативный путь Проходит без участия антител. Характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция начинается с взаимодействия антигена (например, полисахарида) с протеинами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образуется мембраноатакующий комплекс.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-35.jpg" alt=">Альтернативный путь ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-36.jpg" alt=">Лектиновый путь Происходит без участия антител. Иинициируется особым маннозосвязывающим белком сыворотки крови, который"> Лектиновый путь Происходит без участия антител. Иинициируется особым маннозосвязывающим белком сыворотки крови, который после взаимодействия с остатками маннозы на поверхности микробных клеток катализирует С 4. Дальнейший каскад реакций сходен с классическим путем.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-37.jpg" alt=">Лизоцим протеолитический фермент, синтезируемый фагоцитами. Содержится в крови, лимфе, молоке, сперме, урогенитальном тракте,"> Лизоцим протеолитический фермент, синтезируемый фагоцитами. Содержится в крови, лимфе, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует только в спинномозговой жидкости и передней камере глаза. Китайские учёные вывели трансгенных коров, молоко которых содержит человеческий лизоцим. Механизм действия Разрушает гликопротеиды (мурамилдипептид) клеточной стенки бактерий, что ведет к их лизису и способствует фагоцитозу поврежденных клеток.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-38.jpg" alt=">Лизоцим Функции: бактерицидное и бактериостатическое действие активирует фагоцитоз и"> Лизоцим Функции: бактерицидное и бактериостатическое действие активирует фагоцитоз и образование антител. Нарушение синтеза лизоцима =>снижение резистентности организма, возникновение воспалительных и инфекционных заболеваний. Лечение препаратами лизоцима (из яичного белка или путем биосинтеза).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-39.jpg" alt=">Интерферон Относится к важным защитным белкам иммунной системы. Открыт в 1957 г. "> Интерферон Относится к важным защитным белкам иммунной системы. Открыт в 1957 г. Семейство белков гликопротеидов Синтезируются клетками иммунной системы и соединительной ткани. Обладают относительной видоспецифичностью.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-40.jpg" alt=">Три типа интерферонов: Альфа-интерферон лейкоцитарный – вырабатывается лейкоцитами; "> Три типа интерферонов: Альфа-интерферон лейкоцитарный – вырабатывается лейкоцитами; Бета-интерферон – фибробластный – синтезируется фибробластами (клетками соединительной ткани); Гамма-интерферон иммунный – вырабатывается активированными Т лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-41.jpg" alt=">Синтезируется постоянно (концентрация в крови = примерно 2 МЕ/мл). Выработка интерферона резко возрастает"> Синтезируется постоянно (концентрация в крови = примерно 2 МЕ/мл). Выработка интерферона резко возрастает при инфицировании вирусами

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-42.jpg" alt=">Функции интерферонов: противовирусное действие противоопухолевая защита (задерживает пролиферацию опухолевых"> Функции интерферонов: противовирусное действие противоопухолевая защита (задерживает пролиферацию опухолевых клеток) иммуномодулирующая активность (стимулирует фагоцитоз, естественные киллеры, регулирет антителообразование В клетками, активирует экспрессию главного комплекса гистосовместимости).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-43.jpg" alt=">Механизм действия. Непосредственно на вирус вне клетки не действует, а связывается со "> Механизм действия. Непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-44.jpg" alt=">Получение интерферона 1 способ путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным"> Получение интерферона 1 способ путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона. 2 способ генно инженерный путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Рекомбинантный интерферон нашел широкое применение в медицине

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-45.jpg" alt=">Использование интерферона с профилактической целью при многих вирусных инфекциях (грипп); "> Использование интерферона с профилактической целью при многих вирусных инфекциях (грипп); с лечебной целью при хронических вирусных инфекциях (гепатиты (В, С, D), герпес, рассеянный склероз и др); дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-46.jpg" alt=">Защитные белки сыворотки крови Принимают участие в защите организма от микробов и других антигенов"> Защитные белки сыворотки крови Принимают участие в защите организма от микробов и других антигенов Белки острой фазы (С реактивный белок, противовоспалительные и др.) Вырабатываются в печени в ответ на повреждение тканей и клеток. СРБ способствует опсонизации бактерий и является индикатором воспаления. Маннозосвязывающий белок - нормальный протеин сыворотки крови. Способен прочно связываться с остатками маннозы, находящимися на поверхности микробных клеток, и опсонизировать их. Способствует фагоцитозу, активирует систему комплемента по лектиновому пути.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-47.jpg" alt=">Пропердин -гамма глобулин нормальной сыворотки крови. Способствует активации комплемента по альтернативному пути Фибронектин"> Пропердин -гамма глобулин нормальной сыворотки крови. Способствует активации комплемента по альтернативному пути Фибронектин - универсальный белок плазмы и тканевых жидкостей, синтезируемый макрофагами. Обеспечивает опсонизацию антигенов и связывание клеток с чужеродными веществами (фагоцитов с антигенами и микробами), экранирует дефекты эндотелия сосудов, препятствуя тромбообразованию. Бета-лизины - белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматическую мембрану бактерий.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-48.jpg" alt=">СПАСИБО за ВНИМАНИЕ ">

Резистентность (от лат. resistere - противостоять, сопротивляться) - устойчивость организма к действию чрезвычайных раздражителей, способность сопротивляться без существенных изменений постоянства внутренней среды; это важнейший качественный показатель реактивности;

Неспецифическая резистентность представляет собой устойчивость организма к повреждению (Г. Селье, 1961), не к какому-либо отдельному повреждающему агенту или группе агентов, а вообще к повреждению, к разнообразным факторам, в том числе и к экстремальным.

Она бывает врожденной (первичная) и приобретенной (вторичная), пассивной и активной.

Врожденная (пассивная) резистентность обусловливается анатомо-физиологическими особенностями организма (например, устойчивость насекомых, черепах, обусловленная их плотным хитиновым покровом).

Приобретенная пассивная резистентность возникает, в частности, при серотерапии, заместительном переливании крови.

Активная неспецифическая резистентность обусловливается защитно-приспособительными механизмами, возникает в результате адаптации (приспособления к среде), тренировки к повреждающему фактору (например, повышение устойчивости к гипоксии вследствие акклиматизации к высокогорному климату).

Неспецифическую резистентность обеспечивают биологические барьеры: внешние (кожа, слизистые, органы дыхания, пищеварительный аппарат, печень и др.) и внутренние - гистогематические (гематоэнцефалический, гематоофтальмический, гематолабиринтный, гематотестикулярный). Эти барьеры, а также содержащиеся в жидкостях биологически активные вещества (комплемент, лизоцим, опсонины, пропердин) выполняют защитную и регулирующую функции, поддерживают оптимальный для органа состав питательной среды, способствуют сохранению гомеостаза.

ФАКТОРЫ, СНИЖАЮЩИЕ НЕСПЕЦИФИЧЕСКУЮ РЕЗИСТЕНТНОСТЬ ОРГАНИЗМА. ПУТИ И МЕТОДЫ ЕЕ ПОВЫШЕНИЯ И УКРЕПЛЕНИЯ

Любое воздействие, меняющее функциональное состояние регуляторных систем (нервной, эндокринной, иммунной) или исполнительных (сердечно-сосудистой, пищеварительной и др.), приводит к изменению реактивности и резистентности организма.

Известны факторы, снижающие неспецифическую резистентность: психические травмы, отрицательные эмоции, функциональная неполноценность эндокринной системы, физическое и психическое переутомление, перетренировка, голодание (особенно белковое), неполноценное питание, недостаток витаминов, тучность, хронический алкоголизм, наркомания, переохлаждение, простуда, перегревание, болевая травма, детренированность организма, его отдельных систем; гиподинамия, резкая перемена погоды, длительное воздействие прямых солнечных лучей, ионизирующее излучение, интоксикация, перенесенные заболевания и т.п.

Различают две группы путей и методов, повышающих неспецифическую резистентность.

При снижении жизнедеятельности, утрате способности к самостоятельному существованию (переносимость)

2. Гипотермия

3. Ганглиоблокаторы

4. Зимняя спячка

При сохранении или повышении уровня жизнедеятельности (СНПС - состояние не специфически повышенной сопротивляемости)

1 1. Тренировка основных функциональных систем:

Физическая тренировка

Закаливание к низким температурам

Гипоксическая тренировка (адаптация к гипоксии)

2 2. Изменение функции регуляторных систем:

Аутогенная тренировка

Словесное внушение

Рефлексотерапия (иглоукалывание и др.)

3 3. Не специфическая терапия:

Бальнеотерапия, курортотерапия

Аутогемотерапия

Протеинотерапия

Неспецифическая вакцинация

Фармакологические средства (адаптогены - женьшень, элеутерококк и др.; фитоциды, интерферон)

К первой группе относятся воздействия, с помощью которых устойчивость повышается вследствие утраты организмом способности к самостоятельному существованию, снижения активности процессов жизнедеятельности. Таковыми являются наркоз, гипотермия, зимняя спячка.

При заражении животного в состоянии зимней спячки чумой, туберкулезом, сибирской язвой заболевания не развиваются (они возникают только после его пробуждения). Кроме того, повышается устойчивость к лучевому воздействию, гипоксии, гиперкапнии, инфекциям, отравлениям.

Наркоз способствует возрастанию устойчивости к кислородному голоданию, электрическому току. В состоянии наркоза не развиваются стрептококковый сепсис и воспаление.

При гипотермии ослабляются столбнячная и дизентерийная интоксикации, снижается чувствительность ко всем видам кислородного голодания, к ионизирующему излучению; повышается устойчивость к повреждению клеток; ослабляются аллергические реакции, в эксперименте замедляется рост злокачественных опухолей.

При всех этих состояниях наступает глубокое торможение нервной системы и, как следствие, - всех жизненных функций: угнетаются деятельность регуляторных систем (нервной и эндокринной), снижаются обменные процессы, затормаживаются химические реакции, уменьшается потребность в кислороде,замедляется крово- и лимфообращение, снижается температура тела, организм переходит на более древний путь обмена - гликолиз. В результате подавления процессов нормальной жизнедеятельности выключаются (или затормаживаются) и механизмы активной защиты, возникает ареактивное состояние, что обеспечивает организму выживание даже в очень трудных условиях. При этом он не сопротивляется, а лишь пассивно переносит патогенное действие среды, почти не реагируя на него. Такое состояние называется переносимостью (повышенная пассивная резистентность) и представляет собой способ выживания организма в неблагоприятных условиях, когда активно защититься, избежать действия чрезвычайного раздражителя невозможно.

Ко второй группе относятся следующие приемы повышения резистентности при сохранении или повышении уровня жизнедеятельности организма:

Адаптогены - это агенты, ускоряющие адаптацию к неблагоприятным воздействиям и нормализующие нарушения, вызываемые стрессом. Они оказывают широкое терапевтическое действие, повышают сопротивляемость к целому ряду факторов физической, химической, биологической природы. Механизм их действия связан, в частности, со стимуляцией ими синтеза нуклеиновых кислот и белка, а также со стабилизацией биологических мембран.

Применяя адаптогены (и некоторые другие лекарственные препараты) и адаптируя организм к действию неблагоприятных факторов внешней среды, можно сформировать особое состояние неспецифически повышенной сопротивляемости - СНПС. Для него характерны повышение уровня жизнедеятельности, мобилизация механизмов активной защиты и функциональных резервов организма, повышенная резистентность к действию многих повреждающих агентов. Важным условием при выработке СНПС является дозированное увеличение силы воздействия неблагоприятных факторов внешней среды, физических нагрузок, исключение перегрузок, во избежание срыва адаптационно-компенсаторных механизмов.

Таким образом, более устойчивым оказывается тот организм, который лучше, активней сопротивляется (СНПС) или менее чувствителен и обладает большей переносимостью.

Управление реактивностью и резистентностью организма - перспективное направление современной профилактической и лечебной медицины. Повышение неспецифической резистентности - эффективный способ общего укрепления организма.

Гуморальные факторы неспецифической защиты организма включают в себя нормальные (естественные) антитела, лизоцим, пропердин, бета-лизины (лизины), комплемент, интерферон, ин­гибиторы вирусов в сыворотке крови и ряд других веществ, посто­янно присутствующих в организме.

Антитела (естественные). В крови животных и человека, которые ранее никогда не болели и не подвергались иммуниза­ции, обнаруживают вещества, вступающие в реакцию со многими антигенами, но в низких титрах, не превышающих разведения 1:10 ... 1:40. Эти вещества были названы нормальными или при­родными антителами. Считают, что они возникают в результате естественной иммунизации различными микроорганизмами.

Л и з о ц и м. Лизосомальный фермент присутствует в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови и экстрактах органов и тканей, в молоке; много лизоцима в белке куриных яиц. Лизоцим устойчив к нагреванию (инактивируется при кипячении), обладает свойством лизировать живые и убитые в основном грамположительные микроорганизмы.

Метод определения лизоцима основан на способности сыво­ротки действовать на культуру микрококкус лизодектикус, выра­щенную на косом агаре. Взвесь суточной культуры готовят по оп­тическому стандарту (10 ЕД) на физиологическом растворе. Ис­следуемую сыворотку последовательно разводят физиологическим раствором в 10, 20, 40, 80 раз и т. д. Во все пробирки добавляют равный объем взвеси микробов. Пробирки встряхивают и ставят в термостат на 3 ч при 37 °С. Учет реакции производят по степени просветления сыворотки. Титр лизоцима - это последнее разве­дение, в котором происходит полный лизис микробной взвеси.

С е к р е т о р н ы й и м м у н о г л о б у л и н А. Постоянно присутствует в содержимом секретов слизистых оболочек, молоч­ных и слюнных желез, в кишечном тракте; обладает выраженны­ми противомикробными и противовирусными свойствами.

П р о п е р д и н (от лат. pro и perdere - подготовить к разруше­нию). Описан в 1954 г. в виде полимера как фактор неспецифичес­кой защиты и цитолизина. Присутствует в нормальной сыворотке крови в количестве до 25 мкг/мл. Это сывороточный белок (бета-глобулин) с молекулярной массой

220 000. Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов. Пропердин действует в составе пропердиновой системы: пропер­дин комплемент и двухвалентные ионы магния. Нативный пропер­дин, играет значительную роль в неспецифической активации комплемента (альтернативный путь активации).

Л и з и н ы. Белки сыворотки крови, обладающие способнос­тью лизировать (растворять) некоторые бактерии и эритроциты. В сыворотке крови многих животных присутствуют бета-лизины, вызывающие лизис культуры сенной палочки, а также многих патогенных микробов.



Л а к т о ф е р р и н. Негеминовый гликопротеид, обладающий железосвязывающей активностью. Связывает два атома трехвалент­ного железа, конкурируя с микробами, в результате чего рост мик­робов подавляется. Синтезируется полиморфноядерными лейко­цитами и гроздевидными клетками железистого эпителия. Яв­ляется специфическим компонентом секрета желез - слюнных, слезных, молочных, дыхательного, пищеварительного и моче­полового, трактов. Лактоферрин - фактор местного иммунитета, защищающий от микробов эпителиальные покровы.

К о м п л е м е н т. Многокомпонентная система белков сыво­ротки крови и других жидкостей организма, которые играют важ­ную роль в поддержании иммунного гомеостаза. Впервые его опи­сал Бухнер в 1889 г. под названием «алексин» - термолабильный фактор, в присутствии которого происходит лизис микробов. Тер­мин «комплемент» ввел Эрлих в 1895 г. Комплемент весьма не ус­тойчив. Было замечено, что специфические антитела в присутствии свежей сыворотки крови способны вызывать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед поста­новкой реакции прогревать при 56 "С в течение 30 мин, то лизис не произойдет. Оказалось, что гемолиз (лизис) происходит за счет наличия комплемента в свежей сыворотке. Наибольшее количе­ство комплемента содержится в сыворотке морской свинки.

Система комплемента состоит не менее чем из девяти различ­ных белков сыворотки крови, обозначаемых от С1 до С9. С1 в свою очередь имеет три субъединицы - Clq, Clr, Cls. Активиро­ванная форма комплемента обозначается черточкой сверху (с).

Существует два пути активации (самосборки) системы компле­мента - классический и альтернативный, отличающиеся пуско­выми механизмами.

При к л а с с и ч е с к о м пути активации происходит связы­вание компонента комплемента С1 с иммунными комплексами (антиген + антитело), куда включаются последовательно субком­поненты (Clq, Clr, Cls), С4, С2 и СЗ. Комплекс С4, С2 и СЗ обес­печивает фиксацию на клеточной мембране активированного С5 компонента комплемента, а затем включаются через ряд реакций С6 и С7, которые способствуют фиксации С8 и С9. В результате происходит повреждение клеточной стенки или лизис бактериаль­ной клетки.

При а л ь т е р н а т и в н о м пути активации комплемента активаторами служат непосредственно сами вирусы, бактерии или экзотоксины. В альтернативном пути активации не участвуют компоненты С1, С4 и С2. Активация начинается со стадии СЗ, куда включается группа белков: Р (пропердин), В (проактиватор), конвертаза проактиватора СЗ и ингибиторы j и Н. Пропердин в реакции стабилизирует конвертазы СЗ и С5, поэтому этот путь ак­тивации называют также системой пропердина. Реакция начина­ется с присоединения фактора В к СЗ, в результате ряда последо­вательных реакций в комплекс (конвертаза СЗ) встраивается Р (пропердин), который воздействует как фермент на СЗ и С5,"и на­чинается каскад активации комплемента с С6, С7, С8 и С9, что приводит к повреждению клеточной стенки или лизису клетки.

Таким образом, система комплемента служит эффективным механизмом защиты организма, которая активируется в результате иммунных реакций или при непосредственном контакте с микро­бами или токсинами. Отметим некоторые биологические функ­ции активированных компонентов комплемента: участвуют в ре­гуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот; С4, связанный с клеткой, способствует иммунному прикреплению; СЗ и С4 усиливают фа­гоцитоз; С1 и С4, связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку; СЗа и С5а идентичны анафилактоксинам, они воздействуют на нейтрофильные гранулоциты, последние выделяют лизосомные ферменты, разрушающие чужеродные антигены, обеспечивают направлен­ную миграцию макрофагов, вызывают сокращение гладких мышц, усиливают воспаление.

Установлено, что макрофаги синтезируют С1, С2, СЗ, С4 и С5; гепатоциты - СЗ, Со, С8; клетки паренхимы печени - СЗ, С5 и С9.

И н т е р ф е р о н. Выделен в 1957г. английскими вирусоло­гами А. Айзексом и И. Линдерманом. Интерферон первоначально рассматривался как фактор противовирусной защиты. В даль­нейшем выяснилось, что это группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. В качестве индукторов образования интерферона, поми­мо вирусов, выступают бактерии, бактериальные токсины, мито-гены и др. В зависимости от клеточного происхождения интер­ферона и индуцирующих его синтез факторов различают а-ин-терферон, или лейкоцитарный, который продуцируют лейкоциты, обработанные вирусами и другими агентами; (3-интерферон, или фибробластный, который продуцируют фибробласты, обработан­ные вирусами или другими агентами. Оба эти интерферона отне­сены к типу I. Иммунный интерферон, или у-интерферон, проду­цируют лимфоциты и макрофаги, активированные невирусными индукторами.

Интерферон принимает участие в регуляции различных меха­низмов иммунного ответа: усиливает цитотоксическое действие сенсибилизированных лимфоцитов и К-клеток, оказывает анти-пролиферативное и противоопухолевое действие и др. Интерфе­рон обладает видотканевой специфичностью, т. е. более активен в той биологической системе, в которой выработан, защищает клет­ки от вирусной инфекции лишь в том случае, если воздействует на них до контакта с вирусом.

Процесс взаимодействия интерферона с чувствительными клет­ками включает в себя несколько этапов: адсорбция интерферона на клеточных рецепторах; индукция антивирусного состояния; разви­тие вирусной резистентности (наполнение интерферониндуцированных РНК и белков); выраженная резистентность к вирусному инфицированию. Следовательно, интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в пе­риод репликации вирусных нуклеиновых кислот. У интерферона также установлены радиационно-защитные свойства.

И н г и б и т о р ы. Неспецифические противовирусные ве­щества белковой природы, присутствуют в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыха­тельного и пищеварительного трактов, в экстрактах органов и тка­ней. Обладают способностью подавлять активность вирусов в кро­ви и жидкостях вне чувствительной клетки. Ингибиторы подраз­деляют на термолабильные (теряют свою активность при прогревании вании сыворотки крови до 6О...62°С в течение 1 ч) и термоста­бильные (выдерживают нагревание до 100 °С). Ингибиторы обла­дают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.

Ингибиторы тканей, секретов и экскретов животных оказались активными в отношении многих вирусов: например, секреторные ингибиторы респираторного тракта обладают антигемагглютинирующей и вируснейтрализующей активностью.

Бактерицидная активность сыворотки крови (БАС). Свежая сы­воротка крови человека и животных обладает выраженными бактериостатическими свойствами в отношении ряда возбудителей инфекционных болезней. Основные компоненты, подавляющие рост и развитие микроорганизмов, - это нормальные антитела, лизоцим, пропердин, комплемент, монокины, лейкины и другие вещества. Поэтому БАС является интегрированным выражением противомикробных свойств гуморальных факторов неспецифи­ческой защиты. БАС зависит от состояния здоровья животных, условий их содержания и кормления: при плохом содержании и кормлении активность сыворотки значительно снижается.

Определение БАС основано на способности сыворотки крови подавлять рост микроорганизмов, что зависит от уровня нормаль­ных антител, пропердина, комплемента и др. Реакцию ставят при температуре 37 °С с различными разведениями сыворотки, в кото­рые вносят определенную дозу микробов. Разведение сыворотки позволяет установить не только ее способность подавлять рост микробов, но и силу бактерицидного действия, что выражается в единицах.

Защитно-адаптационные механизмы . К неспецифическим фак­торам защиты также принадлежит стресс. Факторы, вызывающие стресс, были названы Г. Силье стрессорами. По Силье стресс - особое неспецифическое состояние организма, возникающее в от­вет на действие различных повреждающих факторов окружающей среды (стрессоров). Кроме патогенных микроорганизмов и их токсинов в качестве стрессоров могут выступать холод, голод, теп­ло, ионизирующее излучение и другие агенты, обладающие спо­собностью вызывать ответные реакции организма. Адаптационный синдром может быть общим и местным. Он обусловливается действием гипофизарно-адренокортикальной системы, связанной с гипоталамическим центром. Под влиянием стрессора щпофиз начинает усиленно выделять андренокортикотропный гормон (АКТГ), стимулирующий функции надпочечников, вызывая у них усиленное выделение противовоспалительного гормона типа кор­тизона, снижающего защитно-воспалительную реакцию. Если действие стрессора слишком сильно или продолжительно, то в процессе адаптации возникает болезнь.

При интенсификации животноводства количество стрессовых факторов, воздействию которых подвергаются животные, значи тельно возрастает. Поэтому профилактика стрессовых воздей­ствий, снижающих естественную резистентность организма и обусловливающих заболевания, является одной из важнейших за­дач ветеринарной службы.

Устойчивое сохранение высокой продуктивности сельскохозяйственных животных во многом зависит от умелого использования человеком адаптационных и защитных свойств их организма. Становится необходимым систематическое и всестороннее изучение естественной резистентности животных. В условиях хозяйств только те животные могут давать ожидаемый эффект, которые обладают высокой естественной резистентностью к неблагоприятным условиям среды.
Технологию производства продукции в животноводстве необходимо сочетать с физиологической потребностью и возможностями животного.
Известно, что у высокопродуктивных животных и птицы направленность биохимических процессов на синтез веществ, составляющих продукцию, очень напряженная. Эта напряженность обменных процессов у животных усугубляется еще и совпадением продуктивного периода в значительной своей части с периодом вынашивания плода. С иммунобиологических позиций состояние живых организмов в современных условиях характеризуется снижением иммунологической реактивности и неспецифического иммунитета.
Проблеме изучения естественной резистентности животных уделялось внимание многих исследователей: А.Д. Адо; С.И. Плященко; Л.К. Бурая, Д.И. Барсукова; И.Ф. Храбустовский.
Защитную функцию крови профессор А.Я. Ярошев характеризовал следующим образом: «Кровь является местом, где находятся различного рода антитела, как образующиеся в ответ на поступление микроорганизмов, веществ, токсинов, так и видовые, обеспечивающие приобретенный и врожденный иммунитет».
Естественная резистентность и иммунитет являются защитными приспособлениями. Вопрос о преимуществе одного из этих защитных приспособлений являются дискуссионным. Неоспоримо то, что в инкубационный период перед выработкой иммунитета, организм оказывает решающее сопротивление заразному агенту и нередко выходит победителем. Вот эту первоначальную сопротивляемость заразному агенту и осуществляют факторы неспецифической защиты. При этом особенность естественной резистентности в отличие от иммунитета является способность организма наследовать неспецифические факторы защиты.
Естественная, или физиологическая резистентность организма является общебиологическим свойством как растений, так и животных. От ее уровня зависит устойчивость организма к вредным факторам внешней среды, в том числе и к микроорганизмам.
В области изучения естественного иммунитета разработки теоретических положений и применения полученных достижений в практике сельскохозяйственных производств много сделали отечественные и зарубежные селекционеры - растениеводы. Что касается животноводства, то по этой труднейшей и весьма важной проблеме исследования довольно разрозненные, отдельные, не объединенные общей направленностью.
Нельзя отрицать, что искусственная иммунизация сельскохозяйственных животных сыграла и продолжает играть неоценимую роль в борьбе со многими инфекционными болезнями, наносившими огромный урон животноводству, но и нельзя думать, что только таким путем можно бесконечно долго сохранять благополучие животных.
Медицине и ветеринарии известно более тысячи инфекционных болезней, вызываемых микроорганизмами. Если бы даже против всех этих болезней были созданы вакцины и сыворотки, трудно представить себе повсеместное практическое их применение в массовых масштабах.
Как известно, в животноводстве проводят иммунизацию только против наиболее опасных инфекций в угрожающих зонах.
В то же время постепенный, несомненно, весьма длительный отбор и подбор животных, обладающих высокой резистентностью, приведет к созданию особей, если не полностью, то в значительной части устойчивых к большинству вредных факторов.
Опыт отечественного и зарубежного животноводства показывает, что более широкое распространение на фермах и птицефабриках имеют не острозаразные заболевания, а такие инфекционные и неинфекционные заболевания, которые могут возникать на фоне снижения уровня естественной резистентности стада.
Важным резервом увеличения производства продуктов и улучшения их качества является снижение заболеваемости и отхода. Это возможно при повышении общей резистентности организма путем отбора особей, отличающихся невосприимчивостью к различным заболеваниям.
Проблема повышения естественной резистентности тесно связана с использованием генетических задатков, представляет большой научный интерес и имеет важное народнохозяйственное значение. Иммунизация животных и их генетическая устойчивость должны взаимно дополнять друг друга.
Селекция на устойчивость к некоторым заболеваниям в отдельности может быть эффективной, но селекция на устойчивость сразу к нескольким заболеваниям параллельно с селекцией по признакам продуктивности практически невозможна. Исходя из этого необходима селекция на повышение общего уровня естественной резистентности организма. Можно привести много примеров, когда односторонняя селекция на продуктивность без учета естественной резистентности приводила к преждевременной выбраковке и утрате ценных линий и семейств.
Создание животных и птицы с высоким уровнем естественной резистентности требует специальных селекционно-генетических программ, большое внимание в которых должно быть уделено таким вопросам, как установление фенотипа и генотипа птицы, отличающейся повышенной естественной резистентностью, изучение наследуемости признака резистентности, установление связи между признаками естественной резистентности и хозяйственно полезными признаками, использование признаков естественной резистентности при селекции. При этом уровень естественной резистентности должен прежде всего отображать способность организма противостоять неблагоприятным факторам внешней среды и указывать на запас защитных сил организма.
Контроль за уровнем естественной резистентности может быть плановотекущим по периодам роста и продуктивности, с учетом принятой в хозяйстве технологии или вынужденным перед проведением технологических приемов: внедрения нового оборудования, перевода животных и птицы из одних условий содержания в другие, вакцинации, ограниченном кормлении, использования новых кормовых добавок и т. д. Это позволит своевремено выявить отрицательные стороны проводимых мероприятий и предотвратить снижение продуктивности, уменьшить процент выбраковки и падежа.
Все данные по определению естественной резистентности животных и птицы должны быть сопоставлены с другими показателями по контролю за ростом и развитием, которые получают в зооветлаборатории.
Контроль за уровнем естественной резистентности должен помочь в определении плановых цифр сохранности поголовья и своевременно наметить мероприятия по имеющимся нарушениям.
Исследования уровня естественной резистентности позволяют в период селекции отбирать высокопродуктивных особей, обладающих одновременно высокой резистентностью при нормальных функциях физиологических систем.
Плановые исследования уровня естественной резистентности необходимо проводить на одной и той же группе в определенные календарные сроки, связанные с напряжением обменных процессов в определенные периоды продуктивности (различные периоды продуктивности, периоды роста).
Естественная резистентность представляет собой реакцию целостного организма, которая регулируется центральной нервной системой. Поэтому для суждения о степени естественной резистентности следует использовать критерии и тесты, отражающие состояние реактивности организма как целого.
Специфику функций иммунной системы определяют процессы, индуцируемые чужеродными субстанциями, антигенами, и основанные на распознавании последних. Однако базой для развертывания специфических иммунных процессов являются более древние реакции, связанные с воспалением. Поскольку они предсуществуют в любом организме до начала любой агрессии и для их развития не требуется развертывания иммунного ответа, эти защитные механизмы называют естественными, или врожденными. Они обеспечивают первую линию защиты от биологической агрессии. Вторая линия защиты - это реакции адаптивного иммунитета - антигенепецифический иммунный ответ. Факторы естественного иммунитета сами по себе обладают достаточно высокой эффективностью в предотвращении биологической агрессии и борьбе с ней, однако у высших животных эти механизмы, как правило, обогащаются специфическими компонентами, которые как бы наслаиваются на них. Система естественных факторов иммунитета является пограничной между собственно иммунной системой и областью, относимой к компетенции патофизиологии, которая также рассматривает механизмы и биологическую значимость ряда проявлений естественного иммунитета, служащих составными компонентами воспалительной реакции.
То есть, наряду с иммунологической реактивностью в организме существует система неспецифической защиты, или неспецифической резистентности. Несмотря на то, что неспецифическая резистентность животных и птицы к различным неблагоприятным воздействиям внешней среды в большей степени обеспечивается лейкоцитарной системой организма, однако она зависит не столько от количества лейкоцитов, сколько от их неспецифических факторов защиты, которые имеются в организме с первого дня жизни и сохраняются до самой гибели. Она включает следующие компоненты: непроницаемость кожных и слизистых покровов; кислотность содержимого желудка; наличие в сыворотке крови и жидкостях организма бактерицидных субстанций - лизоцима, пропердина (комплекса сывороточного белка, ионов М+ и комплемента), а также ферментов и противовирусных веществ (интерферона, термоустойчивых ингибиторов).
Факторы неспецифической защиты первыми включаются в борьбу при поступлении в организм чужеродных антигенов. Они как бы подготавливают почву для дальнейшего развертывания иммунных реакций, которые определяют исход борьбы.
Естественная резистентность животных к различным неблагоприятным воздействиям внешней среды обеспечивается неспецифическими факторами защиты, которые имеются в организме с первого дня жизни и сохраняются до самой гибели. Среди них решающую роль играют фагоцитоз с его защитными клеточными механизмами и гуморальные факторы резистентности, важнейшие из которых лизоцим, бактерицидные факторы. То есть особое положение среди факторов защиты занимают фагоциты (макрофаги и полиморфноядерные лейкоциты) и система белков крови, называемая комплементом. Их можно отнести как к неспецифическим, так, и к иммунореактивным факторам защиты.
Изменения факторов неспецифического иммунитета у животных и птицы имеют возрастные особенности, в частности, с возрастом увеличиваются гуморальные и снижаются клеточные.
Гуморальные факторы неспецифической резистентности как раз и обеспечивают бактерицидные и бактериостатические действия тканей и соков организма и вызывают лизис некоторых видов микроорганизмов. Степень проявления защитных свойств живого организма к микробному агенту хорошо иллюстрирует суммарная бактерицидная активность сыворотки крови. Бактерицидная активность сыворотки крови представляет собой интегральный показатель антимикробной активности всех присутствующих антимикробных веществ, как термолабильных (комплемент, пропердин, нормальные антитела), так и термостабильных (лизоцим, бета-лизин) начал.
К числу факторов естественного иммунитета организма относится лизоцим - универсальный, древнейший защитный фермент, широко распространенный в растительном и животном мире. Особенно широко распространен лизоцим в организме животных и человека: в сыворотке крови, секретах пищеварительных желез и дыхательных путей, молоке, слезной жидкости, шейке матки, печени, селезенке, яйце птиц.
Лизоцим представляет собой основной белок с молекулярной массой 14-15 тыс. Д. Его молекула представлена одной полипептидной цепью, состоящей из 129 аминокислотных остатков и имеющей 4 дисульфидные связи. Лизоцим у животных синтезируется и секретируется гранулоцитами, моноцитами и макрофагами.
Лизоцим в сыворотке крови играет, по крайней мере, двоякую роль. Во-первых, он оказывает антимикробное действие на широкий круг микробов-сапрофитов, разрушая в клеточных стенках мукопротеидные вещества. Во-вторых, не исключено его участие в реакциях приобретенного иммунитета. Бета-лизин обладает свойством разрушения бактериальных клеток при активаторе-комплементе.
Этот фермент обладает основными свойствами белка, вызывает быстрый лизис живых клеток некоторых видов бактерий. Его действие выражается в растворении специфических мукополисахаридных оболочек чувствительных к нему микроорганизмов или задержании их роста. Кроме того, лизоцим убивает бактерии, принадлежащие ко многим другим видам, но не вызывает их лизис.
Лизоцим содержится в гранулоцитах и в активной форме выделяется в результате даже минимального повреждения клеток в окружающую лейкоциты жидкую среду. В связи с этим не случайно этот фермент причисляют к веществам, определяющим естественную и приобретенную невосприимчивость организма к инфекции.
Система комплемента - сложный комплекс белков, представленных главным образом во фракции β-глобулинов, насчитывающий, включая регуляторные, около 20 компонентов, на долю которых приходится 10% белков сыворотки крови и представляющий собой систему каскадно действующих пептидгидролаз. Катаболизм компонентов комплемента самый высокий по сравнению с другими белками сыворотки крови, с обновлением в течение суток до 50% белков системы.
Если учитывать, какую сложную совокупность представляют собой белки сыворотки в системе комплемента, то не приходится удивляться тому, что около 70 лет потребовалось для установления того факта, что комплемент состоит из 9 компонентов, а их в свою очередь можно подразделить на 11 самостоятельных белков.
Комплемент впервые описал Бухнер в 1889 г. Под названием «алексин» - термолабильный фактор, в присутствии которого наблюдается лизис микробов. Свое название комплемент получил благодаря тому, что он комплементирует (дополняет) и усиливает действие антител и фагоцитов, защищая организм человека и животных от большинства бактериальных инфекций. В 1896 г. Borde первый определил комплемент как фактор, присутствующий в свежей сыворотке, который необходим для лизиса бактерий и эритроцитов. Фактор этот не изменялся после предварительной иммунизации животного, что позволило отчетливо дифференцировать комплемент от антител. Поскольку довольно быстро поняли, что комплемент - не единственное функциональное вещество в сыворотке, все внимание было направлено на его способность стимулировать лизис интактных клеток; комплемент стали рассматривать почти исключительно в свете его способности воздействовать на лизис клеток.
Исследование комплемента в аспекте кинетического анализа этапов, ведущих к лизису клетки, позволило получить точные данные о последовательном взаимодействии компонентов комплемента и важные свидетельства многокомпонентности системы комплемента. Идентификация этих факторов показала, что комплемент является важным медиатором в воспалительном процессе.
Комплемент является важнейшим активатором всей системы приобретенных и нормальных антител, которые в его отсутствие недейственны в иммунных реакциях (гемолиз, бактериолиз, отчасти - реакция агглютинации). Комплемент представляет собой систему каскадно-действующих пептидгидролаз, получивших обозначение от С1 до С9. Установлено, что большая часть компонента синтезируется гепатоцитами и другими клетками печени (около 90%, СЗ, С6, С8, фактор В и др.), а также моноцитами - макрофагами (С1, С2, СЗ, С4, С5).
Различные компоненты комплемента и их фрагменты, образующиеся в процессе активации, способны вызывать воспалительные процессы, лизис клеток, стимулировать фагоцитоз. Конечным результатом может быть сборка комплекса из С5-, С6-, С7-, С8-, и С9- компонентов, атакующего мембрану с образованием в ней каналов и повышением проницаемости мембраны для воды и ионов, что обуславливает гибель клеток.
Активация комплемента может происходить двумя основными путями: альтернативным - без участия антител и классическим - с участием антител.
Бактерицидные факторы тесно связаны между собой, и лишение сыворотки одного из них вызывает изменения в содержании других.
Так, комплемент совместно с антителами или другими сенсибилизирующими агентами может убивать некоторые бактерии (например, Vibrio, Salmonella, Shigella, Esherichia) путем повреждения клеточной стенки. Muschel и Treffers показали, что бактерицидная реакция в системе «S. Typhi - С’ морской свинки - антитела кролика или человека» напоминает в некоторых отношениях гемолитическую реакционную систему: Мд++ усиливает бактерицидную активность; кривые бактерицидного действия похожи на кривые гемолитической реакции; между бактерицидной активностью антител и комплементом имеется обратная зависимость; для того, чтобы убить одну бактериальную клетку, необходимо очень малое количество антител.
Для того, чтобы произошло повреждение или изменение клеточной стенки бактерий, необходим лизоцим, причем этот энзим действует на бактерии лишь после обработки их антителами и комплементом. Нормальная сыворотка содержит достаточное количество лизоцима для повреждения бактерий, но если лизоцим удалить, то повреждений не наблюдается. Добавление кристаллического лизоцима яичного белка восстанавливает бактериолитическую активность системы антитело -комплемент.
Кроме того, лизоцим ускоряет и усиливает бактерицидное действие. Эти наблюдения можно объяснить, исходя из предположения, что антитело и комплемент, контактируя с оболочкой бактериальной клетки, обнажают тот субстрат, на который действует лизоцим.
В ответ на попадание в кровь болезнетворных микробов возрастает число лейкоцитов, что называют лейкоцитозом. Основная функция лейкоцитов состоит в уничтожении болезнетворных микробов. Нейтрофилы, которые составляют большинство лейкоцитов, обладая амебоидными движениями, способны передвигаться. Придя в соприкосновение с микробами, эти большие клетки захватывают их, засасывая внутрь протоплазмы, переваривают и уничтожают. Нейтрофилы захватывают не только живые, но и погибшие бактерии, остатки разрушенных тканей и инородные тела. Лимфоциты, кроме того, участвуют в восстановительных процессах после воспаления тканей. Один лейкоцит может уничтожить более 15 бактерий и иногда погибает при этом. То есть, необходимость определения фагоцитарной активности лейкоцитов как показателя сопротивляемости организма очевидна и обоснования не требует.
Фагоцитозом называется специальная форма эндоцитоза, при которой поглощаются крупные частицы. Фагоцитоз осуществляется только специфическими клетками (нейтрофилами и макрофагами). Фагоцитоз является одним из наиболее ранних механизмов защиты человека и различных видов животных от многих внешних воздействий. В отличие от изучения других эффективных функций нейтрофилов, исследования фагоцитоза стало уже традиционным. Как известно, фагоцитоз - многофакторный и многоэтапный процесс, и каждый из его этапов характеризуется развитием каскада сложнейших биохимических процессов.
Процесс фагоцитоза делится на 4 стадии: приближение к фагоцитируемому объекту, контакт и прилипание частиц к поверхности лейкоцита, поглощение частиц и их переваривание.
Первая стадия: Способность лейкоцитов мигрировать в сторону фагоцитируемого объекта зависит как от хемотаксических свойств самого объекта, так и от хемотаксических свойств плазмы крови. Хемотаксис - движение в заданном направлении. Поэтому именно хемотаксис - определенная гарантия включения нейтрофила в поддержание иммунного гомеостаза. Хемотаксис включает в себя как минимум две фазы:
1. Фаза ориентации, во время которой клетки либо вытягиваются, либо образуют псевдоподии. Около 90% клеток уже в течении нескольких секунд ориентируются на заданное направление.
2. Фаза поляризации, в течение которой осуществляется взаимодействие между лигандом и рецептором. Причем однотипность реагирования на хемотаксические факторы различной природы дает основание предполагать универсальность указанных способностей, которые, по видимому, лежат в основе взаимодействия нейтрофила с внешней средой.
Вторая стадия: прилипание частиц к поверхности лейкоцита. На прилипание и захват частиц лейкоцит отвечает повышением уровня метаболической активности. Происходит троекратное увеличение поглощения О2 и глюкозы, усиливается интенсивность аэробного и анаэробного гликолизов. Это состояние обмена веществ при фагоцитозе получило название «метаболического взрыва». Ему сопутствует дегрануляция нейтрофилов. Содержание гранул выделяется во внеклеточную среду путем экзоциноза. Однако дегрануляция нейтрофилов при фагоцитозе - процесс вполне упорядоченный: с наружной клеточной мембраной сливаются сначала специфические гранулы, и лишь затем азурофильные. Итак, фагоцитоз начинается с экзоцитоза - экстренного выброса во внешнюю среду бактерицидных белков и кислых гидролаз, участвующих в резорбции иммунных комплексов и обезвреживании внеклеточно расположенных бактерий.
Третья стадия: вслед за контактом и прилипанием частиц к поверхности фагоцита следует их поглощение. Фагоцитируемая частица попадает в цитоплазму нейтрофила в результате инвагинации наружной клеточной мембраны. Инвагинированная часть мембраны с заключенной частицей отщепляется, вследствие чего образуется вакуоль или фагосома. Этот процесс может происходить одновременно в нескольких участках клеточной поверхности лейкоцита. Контактный лизис и слияние мембран лизосомальных гранул и фагоцитарной вакуоли приводят к образованию фаголизосомы и поступлению в вакуоль бактерицидных белков и ферментов.
Четвертая стадия: внутриклеточное расщепление (переваривание). Образовавшиеся при выпячивании и отшнуровки клеточной мембраны фагоцитарные вакуоли сливаются с находящимися в цитоплазме гранулами. В результате этого возникают пищеварительные вакуоли, заполненные содержимым гранул и фагоцитируемыми частицами. В первые три минуты после фагоцитоза в вакуолях, заполненных бактериями, поддерживается нейтральная pH, оптимальная для действия ферментов, специфических гранул - лизоцима, лактоферина и щелочной фасфотазы. Затем значение pH падает до 4, в результате чего создается оптимум для действия ферментов азурофильных гранул -миелопероксидазы и водорастворимых кислых гидролаз.
Уничтожение живых объектов, или завершенный фагоцитоз, следует рассматривать как итоговый феномен, в котором сфокусировались многие звенья эффекторного потенциала клетки. Принципиальным этапом в учении об антимикробных свойствах фагоцитов явилось развитие представлений о том, что умервщление бактерий (киллер - эффект) не имеет отношения к деградации (перевариванию) мертвых объектов - убитых микробов, обломков собственных тканей, клеток и др. Этому способствует открытие новых бактерицидных факторов и систем, механизмов их цитотоксичности и способов подключения к фагоцитарным реакциям. С точки зрения реактивности, все бактерицидные факторы нейтрофилов можно разделить на 2 группы.
К первой относятся компоненты, преформированные в зрелом нейтрофиле. Их уровень не зависит от стимуляции клетки, а целиком определяется количеством вещества, синтезированного в процессе гранулопоэза. К ним принадлежат лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки и низкомолекулярные пептиды, получившие название «дефенсины» (от английского defincе - защита). Они лизируют (лизоцим), убивают (катионные белки) или задерживают рост бактерий (лактоферрин). Их роль в противомикробной защите подтверждают наблюдения, сделанные в анаэробном режиме: нейтрофилы, лишенные возможности использовать бактерицидные свойства активированного кислорода, нормально убивали микроорганизмы.
Факторы второй группы образуются или резко активируются при стимуляции нейтрофила. Их содержание тем выше, чем интенсивнее реакция клеток. Усиление окислительного метаболизма ведет к образованию кислородных радикалов, которые вместе с перекисью водорода, миелопероксидазой и галогенами составляют эффекторное звено кислородозависимого аппарата цитотоксичности. Было бы неверным противопоставлять друг другу различные антимикробные факторы. Их эффективность во многом зависит от взаимной сбалансированности, условий, в которых протекает фагоцитоз, вид микроба. Ясно, например, что в анаэробной среде на первый план выступают биоцидные моменты, независимые от кислорода. Они уничтожают многие бактерии, но даже один устойчивый вирулентный штамм может вскрыть несостоятельность подобной системы. Антимикробный потенциал складывается из суммы взаимно дополняющих, нередко взаимно компенсирующих взаимодействий, которые обеспечивают максимальную эффективность бактерицидных реакций. Повреждение его отдельных звеньев ослабляет нейтрофил, но не означает полной беспомощности в защите от инфицирующих агентов.
Следовательно, трансформация наших представлений о гранулоцитах, в частности о нейтрофилах, за последние годы претерпела чрезвычайно большие изменения, и сегодня гетерогенность функциональных возможностей нейтрофилов вряд ли дает основание причислять их к каким-либо известным клеткам, участвующим в различных формах иммунологического ответа. Это подтверждается как огромным спектром функциональных возможностей нейтрофилов, так и сферой их влияний.
Большой интерес вызывают изменения естественной резистентности в зависимости от различных факторов.
Одной из важнейших сторон проблемы естественной устойчивости организма является изучение ее возрастных особенностей. Реактивные свойства в растущем организме складываются постепенно и окончательно сформировываются лишь на определенном уровне общефизиологического созревания. Поэтому молодой и взрослый организм обладают неодинаковой восприимчивостью к заболеваниям, по-разному реагируют на воздействие болезнетворных агентов.
Постнатальный период развития большинства млекопитающих животных характеризуется состоянием пониженной реактивности организма, выражающейся полным отсутствием или слабым проявлением неспецифических гуморальных факторов. Этот период характеризуется также неполноценной воспалительной реакцией и ограниченным проявлением специфических гуморальных факторов защиты. По мере развития реактивность организма животных постепенно усложняется и совершенствуется, что связано с развитием желез внутренней секреции, формированием определенного уровня обмена веществ, совершенствованием защитных приспособлений против инфекций, интоксикаций и так далее.
Клеточные факторы защиты в организме животных возникают раньше, чем гуморальные. У телят клеточная защитная функция организма, наиболее выраженная в первые дни после рождения. В более старшем возрасте степень фагоцитоза постепенно увеличивается с колебаниями опсоно-фагоцитарного показателя в сторону повышения или понижения в зависимости от условий содержания. Переход от молочных кормов на растительные снижает фагоцитарную активность лейкоцитов. Вакцинация телят в первые дни жизни способствует повышению активности фагоцитоза.
При этом у телят, родившихся от неиммунизированных коров, фагоцитарная активность лейкоцитов в 5 раз ниже, чем у телят, родившихся от коров, иммунизированных паратифозным антигеном. Кормление молозивом также способствовало повышению активности лейкоцитов.
Фагоцитарные реакции у телят повышаются до 5-дневного возраста, затем в возрасте 10 дней начинают резко снижаться. Наиболее низкие показатели фагоцитоза отмечаются в 20-дневном возрасте. Фагоцитарная активность лейкоцитов в этот период еще ниже, чем у однодневных телят. Начиная с 30-дневного возраста, наблюдается постепенное увеличение фагоцитарной активности лейкоцитов и интенсивности поглощения ими микроорганизмов. Максимальных величин эти показатели достигают в возрасте 6 месяцев. В дальнейшем показатели фагоцитоза изменяются, однако величины их остаются практически на уровне 6-месячного возраста. Следовательно, клеточные факторы защиты к этому возрасту в организме телят уже полностью сформированы.
У новорожденных телят нормальные агглютинины к гертнеровскому антигену отсутствуют и появляются лишь в 2...2,5-месячном возрасте. Телята, вакцинированные в первые дни жизни паратифозной вакциной, не вырабатывают антитела. Агглютинины к этому антигену появляются только в 10...12-дневном возрасте и до 1,5 месяцев образуются в низком титре. В первые 3...7 дней жизни телят они выражены слабо и достигают уровня взрослых животных лишь к 2-месячному возрасту.
Наименьший уровень бактерицидной активности сыворотки крови телят отмечается у новорожденных до приема молозива. На 3-й день после рождения бактерицидная активность сыворотки крови повышается, а к 2-месячному возрасту она практически достигает уровня взрослых животных.
У новорожденных телят до кормления молозивом не обнаруживается лизоцим. После выпойки молозива появляется лизоцим, однако уже к 10-му дню снижается почти в два раза. Однако к месячному возрасту титр лизоцима снова постепенно повышается. К этому времени телята уже способны самостоятельно вырабатывать лизоцим. В 2-месячном возрасте титр лизоцима достигает максимальной величины, затем до 6-месячного возраста количество его поддерживается примерно на одном уровне, после чего вновь в возрасте 12 месяцев титр снижается.
Как видно, в первые 10 дней жизни телят высокая способность лейкоцитов к фагоцитозу компенсирует недостаточность бактерицидной активности сыворотки крови. В более поздние сроки изменения бактерицидной активности сыворотки крови носят волнообразный характер, что, по-видимому, связано с условиями содержания и сезонами года.
Ягнята в первый день жизни имеют относительно высокий фагоцитарный показатель, который к 15-дневному возрасту резко снижается, затем вновь возрастает и достигает своего максимума к 2-месячному возрасту или несколько позже.
Довольно подробно изучена также возрастная динамика гуморальных факторов естественной резистентности организма у ягнят. Так, в первые дни жизни у них отмечаются пониженные показатели естественной резистентности. Способность к продуцированию антител у них появляется в 14...16-дневном возрасте и достигает к 40...60 дням уровня иммунологической реактивности взрослых животных. В первые дни жизни ягнят угнетение микробов при контакте с кровяной сывороткой выражено слабо, в 10...15-дневном возрасте бактерицидная активность сыворотки несколько повышается и к 40...60 дням достигает уровня, свойственного взрослым овцам.
У поросят от рождения до 6-месячного возраста также отмечается определенная закономерность изменений показателей клеточных и гуморальных факторов защиты.
У поросят наиболее низкие показатели фагоцитоза отмечаются в 10-дневном возрасте, в последующем до 6-месячного возраста наблюдается постепенное их повышение. То есть, к 10-дневному возрасту у поросят наблюдается резкое падение всех показателей фагоцитоза. Наиболее выраженное проявление фагоцитоза отмечается у поросят в 15-дневном возрасте. Поросята раннего отъема и искусственно вскормленные имеют более низкие показатели фагоцитарного индекса по сравнению с поросятами, вскормленными под свиноматкой, хотя на их росте ранний отъем от матки не отразился.
Наименьшие показатели опсоно-фагоцитарной реакции отмечаются в 20-дневном возрасте. В этот период снижается не только фагоцитарная активность лейкоцитов, но и уменьшается их количество в 1 мм3 крови (фагоцитарная емкость). Резкое снижение показателей фагоцитоза, по-видимому, связано с прекращением поступления с молозивом антител, способствующих фагоцитозу. С 20-дневного возраста фагоцитарная активность лейкоцитов постепенно возрастает и достигает максимума в 4-месячном возрасте.
Комплементарная активность у поросят начинает обнаруживаться лишь в 5-дневном возрасте и, постепенно нарастая, ко 2...3-му месяцу жизни достигает уровня взрослых животных.
Формирование высокого титра сывороточных белков у поросят происходит независимо от вакцинации свиноматок, к концу четвертой недели жизни. Бактерицидные свойства крови у поросят наиболее выражены к третьей неделе жизни.
В 2-дневном возрасте у поросят хорошо выражена способность сыворотки крови угнетать рост тест-микробов.
К 10-дневному возрасту происходит резкое снижение бактерицидной способности сыворотки. При этом уменьшается не только интенсивность подавления роста микробов сывороткой, но и продолжительность действия ее. В дальнейшем с увеличением возраста животных идет усиление бактерицидной активности сыворотки крови.
Следовательно, молодняк первых 3...4 дней жизни характеризуется слабой иммунологической зрелостью, его естественная резистентность к неблагоприятному воздействию факторов внешней среды низка, с чем связаны высокая заболеваемость и отход в этот период.
У птицы раннему периоду развития (60 дней) присуще слабое проявление гуморальных факторов неспецифического иммунитета организма. В противовес этим показателям в организме птицы на раннем этапе онтогенеза содержится высокое количество лизоцима. Что касается клеточных защитных факторов, то эти показатели достаточно высокие.
В период завершения ювенальной линьки и полового созревания организма каждый определенный показатель естественной резистентности организма имеет свою индивидуальную динамику изменения. Так, окислительно-восстановительная функция крови продолжает постоянно наращиваться. В 150-дневном возрасте комплементарная активность сыворотки крови у ремонтного молодняка достоверно увеличивается. Содержание лизоцима в сыворотке крови имеет четкую тенденцию к снижению. Бактерицидная активность сыворотки крови на этом этапе постэмбрионального развития птицы достоверно повышается и превосходит уровень 60-дневных цыплят. Период полового созревания птицы характеризовался некоторым снижением фагоцитарной интенсивности псевдоэозинофильных гранулоцитов и повышением процента фагоцитирующих псевдоэозинофильных гранулоцитов.
Третий период исследования по сравнению с первым и вторым в большей степени обуславливается яйценоскостью птицы. С началом яйцекладки и последующим ее повышением происходит более существенное снижение окислительно-восстановительной функции крови. Комплементарная активность сыворотки крови увеличивается с повышением яйценоскости и максимальное его количество зарегистрировано в 210-300-дневном возрасте, что соответствовало пику яйцекладки. Бактерицидная активность имеет закономерность к увеличению к началу яйцекладки до ее пика, а в дальнейшем снижается. Это, видимо, сопряжено с более интенсивной деятельностью органов яйцеобразования. С увеличением уровня яйцекладки фагоцитарная интенсивность и процент фагоцитирующих псевдоэозинофильных гранулоцитов у взрослой птицы по сравнению с молодками увеличивается. Таким образом, можно сказать, что на показатели естественной резистентности у птицы большое влияние оказывает уровень их продуктивности; чем выше продуктивность, тем напряженнее неспецифические защитные факторы организма.

Взаимосвязь между реактивностью и резистентностью.

· Увеличение реактивности вызывает повышение активной резистентности. Например повышение температуры тела при лихорадке способствует увеличению образования антител, что приводит к повышению иммунитета.

· Увеличение реактивности уменьшение активной резистентности. Например, увеличение выработки антител при аллергии приводит к понижению устойчивости организма к действию веществ антигенной природы.

· Уменьшение реактивности приводит к уменьшению резистентности. Уменьшение образования антител приводит к понижению иммунитета.

· Уменьшение реактивности приводит к повышению резистентности. Например при гипотермии увеличивается устойчивость организма к инфекции, интоксикации и т.д. (зимняя спячка).

Барьерные свойства (факторы защиты) ротовой полости обеспечиваются неспецифическими и специфическими (иммунологическими) механизмами. Неспецифические факторы защиты связаны со структурными особенностями слизистой оболочки ротовой полости, защитными свойствами слюны (ротовой жидкости), а также с нормальной микрофлорой полости рта. Специфические факторы обеспечиваются функционированием Т-, В-лимфоцитов и иммуноглобулинами (антителами). Специфические и неспецифические факторы защиты взаимосвязаны и находятся в динамическом равновесии. Механизмы местного иммунитета чрезвычайно чувствительны к воздействию различных внешних (экзогенных) и внутренних (эндогенных) факторов. При нарушении местного или общего иммунитета происходит активация микрофлоры в ротовой полости и развитие патологических процессов. Важное значение имеют экологическая обстановка, характер профессиональной деятельности, питание и вредные привычки человека. Ухудшение экологической ситуации, влияние на организм неблагоприятных факторов окружающей среды привели к росту заболеваемости населения, увеличению инфекционных, аллергических, аутоиммунных и других патологий. Изменилось и клиническое течение различных заболеваний человека, увеличился процент атипичных и стертых форм, резистентных к общепринятым методам терапии, чаще отмечается хронизация процесса. Нередко условно-патогенные микробы становятся патогенными для человека. Одновременно с этим по мере развития иммунологии становится ясно, что течение и исход практически всех заболеваний и патологических процессов в организме в той или иной степени зависят от функционирования иммунной системы.

Неспецифические факторы резистентности:

1. естественные барьеры: кожа и слизистые оболочки

2. система фагоцитов (нейтрофилы и макрофаги)

3. система комплемента

4. интерфероны

5. бактерицидные гуморальные факторы



6. система естественных (нормальных) киллеров, не обладающих антигенной

специфичностью (Т-киллеры, N К-клетки).

1 .Кожа и слизистые оболочки . Способность кожи к десквамации клеток обеспечивает механическое удаление патогенной инфекции, а воздействие молочной кислоты и жирных кислот, содержащихся в поте и секрете сальных желез и обусловливающих низкое значение рН, оказывается губительным для большинства бактерий за исключение Staphylococcus aureus.

Секрет, выделяемый мукоцеллюлярным аппаратом слюнных желез, бронхов, желудка, кишечника и других внутренних органов, действует как защитный барьер, препятствуя прикреплению бактерий к эпителиальным клеткам и механически удаляя их за счет движения ресничек эпителия (при кашле, чихании). Вымывающее действие слюны, слез, мочи способствует защите поверхности от повреждения, вызванного патогенными агентами. Во многих биологических жидкостях, выделяемых организмом, содержатся вещества, обладающие бактерицидными свойствами (например, лизоцим в слюне, слезах, носовых выделениях; соляная кислота в желудочном соке; лактопероксидаза в грудном молоке и т.д.). По мнению многих исследователей, собственная микрофлора ротовой полости также подавляет рост патогенной флоры за счет конкурентного потребления веществ, необходимых для роста, и выделяют такие факторы, как перекись водорода, молочная кислота, нуклеазы и даже лизоцим.

2. Система фагоцитов , как неспецифических факторов резистентности, представлена двумя типами клеток: микрофагами (полиморфноядерные нейтрофилы) и макрофагами, трансформирующимися из моноцитов, которые задерживаются в тканях, образуя систему мононуклеарных фагоцитов. Ряд компонентов слюны (оксидаза, калликреин, кинины и др.) обладают выраженной хемотаксической активностью, благодаря чему регулируют миграцию лейкоцитов в полость рта.

Всем фагоцитам присущи следующие функции:

1. миграция – способность к беспорядочному перемещению в пространстве.

2. хемотаксис – способность к направленному перемещению в пространстве.

3. адгезия – способность фагоцитов прилипать к определенным субстратам и задерживаться на них.

4. эндоцитоз – способность захватывать и поглощать твердые частицы и капли жидкости.

5. бактерицидность – способность убивать и переваривать бактерии.

6. секреция – способность выделять гидролазы и другие биологически активные вещества.

Фагоцитоз – это активное поглощение клетками твердого материала. Стадии фагоцитоза: 1. Стадия сближения 2. Стадия прилипания 3. Стадия поглощения 4. Стадия переваривания

На поверхности фагоцитов есть специальные рецепторы к веществам опсонинам. Опсонины – это вещества, которые способствуют прилипанию бактерий и антигенов к фагоцитам и стимулируют фагоцитоз. Адсорбция опсонинов на поверхности бактериальных клеток и антигенов называется опсонизацией. Среди опсонинов наибольшее значение имеют антитела – Ig G и промежуточные продукты активации комплемента С 3б, С-реактивный белок, фибронектин.

Механизмы разрушения микроорганизмов в фагоците.

· кислородная система (перекись водорода и свободные радикалы)

· лизоцим

· лактоферрин (конкурирует с микробами за ионы железа)

· катионные белки

· лизосомальные ферменты

Фагоцитоз легче протекает в присутствии ионов кальция и магния и при хорошей оксигенации. Гранулы нейтрофилов содержат низкомолекулярные катионные полипептиды и катионные белки, лизоцим, лактоферрин и широкий спектр гидролаз, достаточный для деградации всех или многих липидов, полисахаридов и белков бактерий, что приводит к их значительной деструкции в считанные часы. Однако при высокой плотности нейтрофилов на единицу объема ткани наступает их самоактивация и образование очагов инфильтрированной ткани (абсцессы, фурункулы). Активированные нейтрофилы потенциально цитотоксичны для окружающих клеток. К неспецифическим факторам резистентности относятся также моноциты и макрофаги. Макрофаги продуцируют растворимые белки монокины: интерлейкин-1, лейкоцитарный пироген, интерфероны, простагландины, тромбоксан А 2 , лейкотриены В и С, фибронектин, который участвует в клеточной адгезии, распластывании и движении клеток.

Дефекты фагоцитарной системы существенно снижают естественную резистентность организма. Они проявляются в сочетании с иммунными нарушениями. Выделяют несколько вариантов этих дефектов.

1. Снижение продукции или ускоренный распад гранулоцитов , что характерно для детского хронического агранулоцитоза с аутосомно-рецессивным типом наследования, гиперспленизма, сцепленной с полом гипогаммаглобулинемии, лекарственной аллергии. Это проявляется периодическими нейтропениями и моноцитопениями, при которых отмечается повышение температуры тела, общее недомогание, головная боль, пиогенные инфекции, изъязвление слизистой оболочки полости рта и другие осложнения, представляющие угрозу для жизни больного.

2. Нарушение подвижности и хемотаксиса гранулоцитов , что наблюдается при циррозе печени, ревматоидном артрите (хемотаксис тормозят иммунные комплексы), сахарном диабете, кандидозе слизистых и кожи (нарушение полимеризациии актина и метаболизма АТФ). В некоторых случаях нарушение хемотаксиса и фагоцитоза связано с наследственным дефектом особого вида белка (GP110), из-за чего больные становятся чувствительными главным образом к бактериальным инфекциям.

3. Нарушение адгезивных свойств (опсонизации), что может быть связано с отсутствием мембранного гликопротеина (GP110), влияющего на адгезию нейтрофилов, дефектом системы пропердина и дефицитом потребления комплемента. Это проявляется частыми инфекциями: отитами, периодонтитами, пневмониями.

4. Нарушение внутриклеточного процесса переработки антигена может быть обусловлено замедленным образованием или отсутствием специфических гранул в нейтрофилах, что сопровождается подавлением их бактерицидных свойств. Причинами подавления бактерицидности могут быть врожденный дефицит миелопероксидазы в первичных гранулах нейтрофилов и макрофагов, а также отсутствие лизоцима, что может проявляться кандидозом.

5. Незавершенность фагоцитоза. Необходимое условие процесса внутриклеточной бактерицидности - это постоянная продукция гранулоцитами и моноцитами перекиси водорода. В противном случае фагоцитоз происходит, как правило, нормально, но возбудители не перевариваются и сохраняют свои свойства. В результате возникают тяжелые рецидивирующие инфекции, дерматит, стоматит, деструктивные процессы в легких, гепатоспленомегалия. В пораженных органах и тканях обнаруживаются гранулематозные изменения, иногда с абсцедированием.

3. Система комплемента - сложный комплекс сывороточных белков {около 20 белков). Комплемент представляет собой систему высокоэффективных протеаз, последовательная активация которых вызывает бактериолизис или цитолиз. Из общего количества сывороточных белков на систему комплемента приходится 10 %. Она является основой защитных сил организма. Комплемент активирует фагоцитоз, осуществляя непосредственно или опосредованно через антитела опсонизацию микробов. Компоненты комплемента обладают хемотаксической активностью, участвуют в регуляции гуморального звена иммунитета.

Основные функции активированного комплемента:

1. опсонизация бактерий, вирусов и усиление фагоцитоза

2. лизис микробов и других клеток

3. хемотаксис

Нарушения в системе комплемента:

1. Дефицит компонентов комплемента. Наследственно обусловленный дефицит С 1, С 2, С 3 и других компонентов этой системы. Например, дефицит С1 – сыворотка утрачивает бактерицидность, повторные инфекции верхних дыхательных путей, отит, поражение суставов и хр. гломерулонефрит. Компонент С3 является ключевым в формировании ферментных и регуляторных свойств комплемента и при его дефиците - высокая смертность. Приобретенная недостаточность комплемента наблюдается при эндокардите, сепсисе, малярии, некоторых вирусных инфекциях, красной волчанке, ревматоидном артрите. При всех этих заболеваниях может развиваться гломерулонефрит, вероятно, вследствие накопления неразрушенных в отсутствие комплемента комплексов АГ+АТ.

2. Дефицит ингибиторов и инактиваторов компонентов комплемента. Дефицит ингибитора С 1 ведет к избыточной активации комплемента и развитию отека Квинке.

Выраженные нарушения системы комплемента характерны для острых бактериальных и вирусных инфекций, аутоиммунной гемолитической анемии, иммунной тромбоцитопении, гломерулонефрита, красной волчанки, сывороточной болезни и т.д. Функциональные дефекты системы комплемента приводят к тяжелым рецидивирующим инфекциям (пневмонии, стоматиты) и патологическим состояниям, обусловленным иммунными комплексами.

4. Бактерицидные гуморальные факторы. Среди растворимых бактерицидных соединений, вырабатываемых организмом, наиболее распространен фермент лизоцим (муромидаза). Он расщепляет муроминовую кислоту, входящую в состав оболочки грамотрицательных бактерий, что ведет к лизису клеточных стенок микроорганизмов. Лизоцим синтезируется и выделяется гранулоцитами, моноцитами и макрофагами, содержится во всех жидкостях организма: слюне, слезной жидкости, ликворе, сыворотке крови - и является важным фактором бактерицидности.

Лактоферрин т акже относится к бактерицидным гуморальным факторам. Это белок, содержащийся в специфических гранулах нейтрофилов. Он играет важную роль в образовании гидроксильных радикалов из молекулярного кислорода и пероксида водорода и продукции через интерлейкин-1 острофазных белков: С-реактивного белка, фибриногена и компонентов комплемента (СЗ и С9).

5. Интерфероны - низкомолекулярные белки, синтезируемые лимфоцитами (14 разновидностей a-интерферона) и фибробластами (b-интерферон). При вирусной инфекции под действием интерферонов в незараженной клетке стимулируется образование белков-ингибиторов, которые нарушают репродукцию вирусов.

6. Система нормальных киллеров (NK-клеток). Это естественные, натуральные, природные киллеры. Они представляют собой большие гранулярные лимфоциты - низкодифференцированные потомки стволовой кроветворной клетки и оказывают неспецифическое токсическое действие на клетки некоторых опухолей и нормальных тканей. Они функционируют как эффекторы противовирусного иммунитета. В качестве NК-клеток могут функционировать полиморфноядерные гранулоциты, макрофаги, моноциты, тромбоциты, а также Т-лимфоциты.