Хеморецепторы дыхательного центра реагируют на концентрацию. Регуляция дыхания. Рис.15. Роль хеморецепторов в регуляции дыхания

Мускулатуры, достигается соответствие механических параметров дыхания сопротивлению дыхательной системы, которое возрастает, 1. при уменьшении растяжимости легких, 2. сужении бронхов и голосовой щели, 3. набухании слизистой оболочки носа. Во всех случаях сегментарные рефлексы на растяжение усиливают сокращение межреберных мышц и мышц передней брюшной стенки. У человека импульсация с проприорецепторов дыхательных мышц участвует в формировании ощущения, возникающих при нарушении дыхания. 4.9 Роль хеморецепторов в регуляции дыхания Основное назначение регуляции внешнего дыхания заключается в поддержании оптимального газового состава артериальной крови - напряжения О2, напряжения СО2, и, тем самым, в значительной мере - концентрации водородных ионов. У человека относительное постоянство напряжения газов крови сохраняется даже при физической работе, когда их потребление возрастает в несколько раз, так как при работе вентиляция легких увеличивается пропорционально интенсивности метаболических процессов. Избыток СО2, и недостаток О2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О2 и СО2, в альвеолах и в артериальной крови почти не изменяется. 81 Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО2. При вдыхании газовой смеси, содержащей 5-7% СО2, увеличение парциального давления СО2 в альвеолярном воздухе задерживает выведение СО2 из венозной крови. Связанное с этим повышение напряжения СО2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыхания, концентрация СО2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО2 в альвеолах на 0.2% вызывает увеличение вентиляции легких на 100%. Роль СО2, как главного регулятора дыхания, выявляется и в том, что недостаток содержания СО2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному прекращению дыхательных движения (апное). Это происходит, например, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО2, в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается. 4.10 Хемочувствительные рецепторы (центральные и периферические) Изменения газового состава внутренней среды организма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствительные рецепторы, расположенные непосредственно в 82 структурах продолговатого мозга ("центральные хеморецепторы") и в сосудистых рефлексогенных зонах ("периферические хеморецепторы"). Центральные хеморецепторы Центральными (медуллярными) хеморецепторами, постоянно участву- ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО2, и кислотно- щелочному состоянию омывающей их межклеточной мозговой жидкости. Хемочувствительные зоны имеются на переднебоковой поверхности продолговатого мозга около выходов подъязычного и блуждающего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация которых зависит от напряжения СО2, в артериальной крови. Спинномозговая жидкость отделена от крови гемато- + энцефалическим барьером, относительно непроницаемым для ионов Н и НСО3 , но свободно пропускающим молекулярный СО2. При повышении напряжения СО2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н, которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО2, и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейронов дыхательного центра продолговатого мозга. В результате дыхание становится более глубоким и вентиляция легких растет за счет увеличения объема каждого вдоха. 83 Снижение напряжения СО2, и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО2, (гиперкапнию) и ацидоз, а также в резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания. Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и месте деления (бифуркация) общей сонной артерии (каротидный синус), т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Хеморецепторы представляют собой самостоятельные образования, заключенные в особых тельцах - клубочках или гломусах, которые находятся вне сосуда. Афферентные волокна от хеморецепторов идут: от дуги аорты - в составе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называемом нерве Геринга. Первичные афференты синусного и аортального нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга. Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии 84 постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Уменьшение напряжения кислорода в артериальной крови ниже нормального уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов. Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посылаемых хеморецепторами каротидного тельца. Повышению напряжения СО2, артериальной крови и соответствующему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Артериальные хеморецепторы ответственны за начальную, быструю, фазу вентиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится напряжение СО2 области хемочувствительных мозговых структур. Гиперкапническая стимуляция артериальных хеморецепторов, подобно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО2 20-30 мм рт.ст и, следовательно, имеет место уже в условиях нормального напряжения СО2, в артериальной крови (около 40 мм рт.ст.). 4.11 Взаимодействие гуморальных стимулов дыхания На фоне повышенного артериального напряжения СО2 или увеличенной концентрации водородных ионов вентиляторная реакция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение парциального давления 85 углекислого газа в альвеолярном воздухе вызывают нарастание легочной вентиляции, превышающее арифметическую сумму ответов, которые вызывают эти факторы, действуя порознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъемом газообмена и требует адекватного ему усиления работы дыхательного аппарата. Установлено, что гипоксемия снижает порог и увеличивает интенсивность вентиляторной реакции на СО2. Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О2 во вдыхаемом воздухе (например, при дыхании газовыми смесями с низким содержанием О2, при пониженном атмосферном давлении в барокамере или в горах) возникает гипервентиляция, направленная на предупреждение значительного снижения парциального давления О2 в альвеолах и напряжения его в артериальной крови. При этом из-за гипервентиляции наступает снижение парциального давления СО2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО; во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О2 и СО2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, 86 напряжение О2 все же снижается, и возникает умеренная гипоксемия. В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморецепторов имеет жизненно важное значение для организма, например, в условиях дефицита О2. При гипоксии из-за снижения окислительного метаболизма в мозге чувствительность медуллярных хеморецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих условиях получает интенсивную стимуляцию от артериальных хеморецепторов, для которых гипоксемия является адекватным раздражителем. Таким образом, артериальные хеморецепторы служат "аварийным" механизмом реакции дыхания на изменение газового состава крови, и, прежде всего, на дефицит кислородного снабжения мозга. 4.12 Взаимосвязь регуляции внешнего дыхания и других функции организма Обмен газов в легких и тканях и приспособление его к запросам тканевого дыхания при различных состояниях организма обеспечивается путем изменения не только легочной вентиляции, но и кровотока как в самих легких, так и других органах. Поэтому механизмы нейрогуморальной регуляции дыхания и кровообращения осуществляются в тесном 87 взаимодействии. Рефлекторные влияния, исходящие из рецептивных полей сердечно- сосудистой системы (например, синокаротидной зоны), изменяют деятельность как дыхательного, так и сосудодвигательного центров. Нейроны дыхательного центра подвержены рефлекторным воздействиям со стороны барорецепторных зон сосудов - дуги аорты, каротидного синуса. Сосудо- двигательные рефлексы неразрывно связаны и с изменением функции дыхания. Повышение сосудистого тонуса и усиление сердечной деятельности, соответственно, сопровождаются усилением дыхательной функции. Например, при физической или эмоциональной нагрузке у человека обычно имеет место согласованное повышение минутного объема крови в большом и малом круге, артериального давления и легочной вентиляции. Однако, резкое повышение артериального давления вызывает возбуждение синокаротидных и аортальных барорецепторов, которое приводит к рефлекторному торможению дыхания. Понижение артериального давления, например, при кровопотере, приводит к увеличению легочной вентиляции, что вызвано, с одной стороны, снижением активности сосудистых барорецепторов, с другой - возбуждением артериальных хеморецепторов в результате местной гипоксии, вызванной уменьшением в них кровотока. Учащение дыхания возникает при повышении давления крови в малом круге кровообращения и при растяжении левого предсердия. На работу дыхательного центра оказывает влияние афферентация от периферических и центральных терморецепторов, особенно при резких и 88 внезапных температурных воздействиях на рецепторы кожи. Погружение человека в холодную воду, например, тормозит выдох, в результате чего возникает затяжной вдох. У животных, у которых отсутствуют потовые железы (например, у собаки), с повышением температуры внешней среды и ухудшением теплоотдачи увеличивается вентиляция легких за счет учащения дыхания (температурное полипное) и усиливается испарение воды через систему дыхания. Рефлекторные влияния на дыхательный центр весьма обширны, и практически все рецепторные зоны при их раздражении изменяют дыхание. Эта особенность рефлекторной регуляции дыхания отражает общий принцип нейронной организации ретикулярной формации ствола мозга, в состав которой входит и дыхательный центр. Нейроны ретикулярной формации, в том числе и дыхательные нейроны, имеют обильные коллатерали почти от всех афферентных систем организма, что и обеспечивает, в частности, разносторонние рефлекторные влияния на дыхательный центр. На деятельности нейронов дыхательного центра отражается большое количество различных неспецифических рефлекторных влияний. Так, болевые раздражения сопровождаются немедленным изменением дыхательной ритмики. Функция дыхания теснейшим образом связана с эмоциональными процессами: почти все эмоциональные проявления человека сопровождаются изменением функции дыхания; смех, плач - это измененные дыхательные движения. В дыхательный центр продолговатого мозга непосредственно поступает импульсация от рецепторов легких и рецепторов крупных сосудов, 89 т.е. рецептивных зон, раздражение которых имеет особенно существенное значение для регуляции внешнего дыхания. Однако, для адекватного приспособления функции дыхания к меняющимся условиям существования организма система регуляции должна обладать полной информацией о том, что происходит в организме и в окружающей среде. Поэтому для регуляции дыхания имеют значение все афферентные сигналы от разнообразных рецептивных полей организма. Вся эта сигнализация поступает не непосредственно в дыхательный центр продолговатого мозга, а в различные уровни головного мозга, и от них непосредственно может передаваться как на дыхательную, так и на другие функциональные системы. Различные центры головного мозга образуют с дыхательным центром функционально подвижные ассоциации, обеспечивающие полноценное регулирование дыхательной функции. В центральный механизм, регулирующий дыхание, включены разные уровни ЦНС. Значение для регуляции дыхания структур стволовой части мозга, в том числе варолиевого моста, среднего мозга, заключается в том, что эти отделы ЦНС получают и переключают на дыхательный центр проприоцептивную и интероцептивную сигнализацию, а промежуточный мозг - сигнализацию об обмене веществ. Кора больших полушарий, как центральная станция анализаторных систем, вбирает и обрабатывает сигналы от всех органов и систем, делая возможным адекватное приспособление различных функциональных систем, в том числе и дыхания, к тончайшим изменениям жизнедеятельности организма. Своеобразие функции внешнего дыхания заключается в том, что она в одной и той же мере и автоматическая, и произвольно управляемая. Человек 90

Рo 2 и Рсо 2 в артериальной крови че­ловека и животных поддерживается на достаточно стабильном уров­не, несмотря на значительные изменения потребления О 2 и выде­ление СО 2 . Гипоксия и понижение рН крови (ацидоз) вызывают усиление вентиляции (гипервентиляция), а гипероксия и повышение рН крови (алкалоз) - понижение вентиляции (гиповентиляция) или апноэ. Контроль за нормальным содержанием во внутренней среде организма О 2 , СО 2 и рН осуществляется периферическими и центральными хеморецепторами.

Артериальные (периферические) хеморецепторы. Периферические хеморецепторы находятся в каротидных и аортальных тельцах. Каротидные тельца состоят из скопления клеток I типа (рис. 25) . Эти клетки окутаны глиаподобными клетками II типа и имеют контакт с открытыми капиллярами. Гипоксия приводит к деполяризации мембраны клеток I типа (механизм возникновения возбуждения пока недостаточно изучен). Сигналы от артериальных хеморецепторов по синокаротидным и аортальным нервам первоначально поступают к нейронам ядра одиночного пучка продолговатого мозга, а затем переключаются на нейроны дыхательного центра. Уникальной особенностью периферических хеморецепторов является их высокая чувствительность к уменьшению Ро 2 артериальной крови, в меньшей степени они реагируют на увеличение Рco 2 и рН.

Рис. 25. Каротидный (сонный) синус и каротидное (сонное) тельце

А. КаротидныйсинусБ. Клубочеккаротидноготельца

Недостаток О 2 в артериальной крови является основным раздражи­телем периферических хеморецепторов. Импульсная активность в афферентных волокнах синокаротидного нерва прекращается при Рао 2 выше 400 мм рт.ст. (53,2 кПа). При нормоксии частота разрядов синокаротидного нерва составляет 10% от их максимальной реакции, которая наблюдается при Раo 2 около 50 мм рт.ст. и ниже. Гипоксическая реакция дыхания практически отсутствует у корен­ных жителей высокогорья и исчезает примерно через 5 лет у жителей равнин после начала их апаптации к высокогорью (3500 м и выше).

Центральные хеморецепторы. Окончательно не уста­новлено местоположение центральных хеморецепторов. Исследова­тели считают, что такие хеморецепторы находятся в ростральных отделах продолговатого мозга вблизи его вентральной поверхности, а также в различных зонах дорсального дыхательного ядра.

Адекватным раздражителем для центральных хеморецепторов является изменение концентрации Н + во внеклеточной жидкости мозга. Функцию регулятора пороговых сдвигов рН в области цен­тральных хеморецепторов выполняют структуры гематоэнцефалического барьера, который отделяет кровь от внеклеточной жидкости мозга. Через этот барьер осуществляется транспорт О 2 , СО 2 и Н + между кровью и внеклеточной жидкостью мозга. Поскольку проницаемость барьера для CO 2 велика (в отличие от H + и HCO – 3), а CO 2 легко диффундирует через клеточные мембраны, отсюда следует, что кнутри от барьера (в интерстициальной жидкости, в ликворе, в цитоплазме клеток) наблюдается относительный ацидоз (сравнительно с кровью кнаружи от барьера) и что увеличение Pco 2 приводит к большему уменьшению значения pH, чем в крови. Другими словами, в условиях ацидоза возрастает хемочувствительность нейронов к рco 2 и pH. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.


Контрольные вопросы

1. Где расположены периферические хеморецепторы?

2. Что является основным стимулятором периферических хеморецепторов?

3. Где расположены центральные хеморецепторы?

4. Что является основным стимулятором центральных хеморецепторов?

Оглавление темы "Дыхательный центр. Дыхательный ритм. Рефлекторная регуляция дыхания.":
1. Дыхательный центр. Что такое дыхательный центр? Где находится дыхательный центр? Комплекс Бетзингера.
2. Дыхательный ритм. Происхождение дыхательного ритма. Пребетзингерова область.
3. Пневмотаксический центр. Влияние моста на дыхательный ритм. Апнейстический центр. Апнейзис. Функция спинальных дыхательных мотонейронов.
4. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические (артериальные) хеморецепторы.
5. Механорецепторы. Механорецепторный контроль дыхания. Рецепторы легких. Рецепторы реулирующие дыхание.
6. Дыхание при физической нагрузке. Нейрогенные стимулы дыхания. Влияние на дыхание физической нагрузки низкой и средней интенсивности.
7. Влияние на дыхание физической нагрузки высокой интенсивности. Энергетическая стоимость дыхания.
8. Дыхание человека при измененном барометрическом давлении воздуха. Дыхание при пониженном давлении воздуха.
9. Горная болезнь. Причины (этиология) горной болезни. Механизм развития (патогенез) горной болезни.
10. Дыхание человека при повышенном давлении воздуха. Дыхание при высоком атмосферном давлении. Кесонная болезнь. Газовая эмболия.

Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические (артериальные) хеморецепторы.

Хеморецепторный контроль дыхания осуществляется при участии центральных и периферических хеморецепторов . Центральные (медуллярные ) хеморецепторы расположены непосредственно в в ростральных отделах вентральной дыхательной группы, в структурах голубого пятна (locus coeruleus), в ретикулярных ядрах шва ствола мозга и реагируют на водородные ионы в окружающей их межклеточной жидкости мозга (рис. 10.23). Центральные хеморецепторы представляют собой нейроны, которые в определенной степени являются рецепторами углекислого газа, поскольку величина рН обусловлена парциальным давлением С02, согласно уравнению Гендерсона-Гасельбаха , а также тем, что концентрация ионов водорода в межклеточной жидкости мозга зависит от парциального давления углекислого газа в артериальной крови.

Рис. 10.23. Зависимость вентиляции легких от степени стимуляции центральных хеморецепторов изменениями [Н+]/РС02 в артериальной крови. Увеличение парциального давления С02 в артериальной крови выше порога (РС02 = 40 мм рт. ст.) линейно увеличивает объем вентиляции легких.

Увеличение вентиляции легких при стимуляции центральных хеморецепторов ионами водорода называется центральным хеморефлексом , который оказывает выраженное влияние на дыхание. Так, в ответ на уменьшение рН внеклеточной жидкости мозга в области локализации рецепторов на 0,01 легочная вентиляция возрастает в среднем на 4,0 л/мин. Однако центральные хеморецепторы медленно реагируют на изменения С02 в артериальной крови, что обусловлено их локализацией в ткани мозга. У человека центральные хеморецепторы стимулируют линейное увеличение вентиляции легких при увеличении С02 в артериальной крови выше порог, равного 40 мм рт. ст.

Периферические (артериальные ) хеморецепторы расположены в каротидных тельцах в области бифуркации общих сонных артерий и в аортальных тельцах в области дуги аорты. Периферические хеморецепторы реагируют как на изменение концентрации водородных ионов, так и парциального давления кислорода в артериальной крови. Рецепторы чувствительны к анаэробным метаболитам, которые образуются в ткани каротидных телец при недостатке кислорода. Недостаток кислорода в тканях каротидных телец может возникнуть, например, при гиповентиляции, ведущей к гипоксии, а также при гипо-тензии, вызывающей снижение кровотока в сосудах каротидных телец. При гипоксии (низкое парциальное давление кислорода) периферические хеморецепторы активируются под влиянием увеличения концентрации в артериальной крови, прежде всего, ионов водорода и РС02.


Рис. 10.24. Зависимость вентиляции легких от степени стимуляции периферических хеморецепторов гипоксическим стимулом . При стимуляции периферических хеморецепторов гипоксией имеет место мультипликативное взаимодействие парциального давления С02 в артериальной крови и гипоксии, в результате которого происходит максимальное увеличение вентиляции легких. Напротив, при высоком Парциальном давлении кислорода в артериальной крови периферические хеморецепторы слабо реагируют на увеличение РС02. Если в артериальной крови парциальное давление С02 становится ниже порога (40 мм рт.ст.), то периферические хеморецепторы также слабо реагируют на гипоксию.

Действие на периферические хеморецепторы этих раздражителей усиливается по мере снижения в крови Р02 (мультипликативное взаимодействие). Гипоксия увеличивает чувствительность периферических хеморецепторов к [Н+] и С02. Это состояние называется асфиксией и возникает при прекращении вентиляции легких. Поэтому периферические хеморецепторы называются часто рецепторами асфиксии. Импульсы от периферических хеморецепторов по волокнам синокаротидного нерва (нерв Геринга - часть языкоглоточного нерва) и аортальной ветви блуждающего нерва достигают чувствительных нейронов ядра одиночного тракта продолговатого мозга, а затем переключаются на нейроны дыхательного центра. Возбуждение последнего вызывают прирост вентиляции легких. Вентиляция легких увеличивается линейно в соответствии с величиной [Н+] и РС02 выше порога (40 мм рт. ст.) в артериальной крови, протекающей через каротидные и аортальные тельца (рис. 10.24). Наклон кривой на рисунке, который отражает чувствительность периферических хеморецепторов к [Н+] и РС02, варьирует в зависимости от степени гипоксии.

Центральные хеморецепторы обнаружены в продолговатом мозге на вентромедиальной поверхности на глубине не более 0.2 мм. В этой области расположены два рецептивных поля (рисунок 15), обозначаемые буквами M и L, между ними обнаружено небольшое поле S. Поле S не чувствительно к химизму среды, но его разрушение приводит к исчезновению эффектов возбуждения полей M и L, Этой промежуточной зоне принадлежит важная роль в передаче информации от полей M и L непосредственно дыхательным вентральным и дорзальным ядрам, и передаче информации ядрам другой стороны продолговатого мозга.

В этой же области проходят аферентные пути от периферических хеморецепторов. В вентролатеральных отделах, в районе хеморецептивных полей расположены структуры, оказывающие существенное влияние на тонус вегетативной нервной системы. Вероятно, эта зона имеет отношение к интеграции ритма дыхания и легочной вентиляции с системой кровообращения. В частности в зонах S и М есть нейроны, которые имеют связи с грудными сегментами спинного мозга, их раздражение приводит к повышению сосудистого тонуса. Часть нейронов этой области активируется при раздражении аортального и синокаротидного нервов (информация от периферических хемо- и барорецепторов каротидного синуса и дуги аорты), часть нейронов отвечают на раздражение ядер гипоталамуса (информация об осмотической концентрации внутренней среды, температуре). Таким образом, структуры S и М полей интегрируют афферентные сигналы от расположенных выше нейронных образований и передают тонизирующие влияния вазоконстрикторным нейронам спинного мозга. Каудальный отдел, поле L демонстрирует при его электрическом раздражении противоположные эффекты. Вместе с тем существует четкая нейронная обособленность между нейронами, регулирующими функции кровообращения и нейронами, связанными с дыхательным центром.

Рисунок 15. Расположение хеморецепторов на вентральной поверхности продолговатого мозга

M, L, S поля, участвующие в хеморецепции.

Р – мост,

П – пирамида,

V и XII – черепномозговые нервы,

С1 первый спинномозговой корешок

В настоящее время совершенно точно установлено, что центральные хеморецептивные нейроны возбуждаются только при действии на них ионов водорода. Каким же образом повышение напряжения СО 2 приводит к возбуждению этих структур? Оказывается хемочувствительные нейроны расположены во внеклеточной жидкости и воспринимают изменения рН, вызванные динамикой СО 2 в крови.

Вентролатеральные отделы продолговатого мозга представлены нервными клетками, астроцитарной глией, развитой мягкой мозговой оболочкой и окружены тремя средами мозга: кровью, ликвором и внеклеточной жидкостью (рисунок 16). Среди нейронов выявляются крупные мультиполярные клетки и мелкие, округлые. Оба типа нейронов образуют небольшое ядро, которое контактирует с прилежащими ядрами ретикулярной формации. Крупные мультиполярные нейроны имеют периваскулярную локализацию и их отростки располагаются вблизи стенок микрососудов. В механизме хеморецепции в настоящее время остается много непонятного. Перечислим факты, которые установлены и помогают объяснить этот механизм


Мультиполярные нейроны всегда увеличивают свою метаболическую и электрическую активности при гиперкапнии и при локальном повышении концентрации ионов водорода во внеклеточной жидкости, омывающей эти нейроны.

Между напряжением СО 2 в альвеолярном воздухе и в артериальной крови, с одной стороны, и рН внеклеточной жидкости мозга с другой стороны существует линейная зависимость.

И гиперкапния, и локальное повышение рН внеклеточной жидкости всегда сопровождаются дыхательной реакцией - увеличение глубины и частоты дыхания.

Между ликвором и кровью существует незначительная, но устойчивая разность потенциалов.

Снижение рН приводит к изменению этой разности потенциалов.

Существует градиент концентрации по ионам водорода между кровью и внеклеточной жидкостью - во внеклеточной жидкости ионов водорода больше. Градиент поддерживается активным переносом протонов из крови во внеклеточную жидкость.

На границе между кровью и внеклеточной жидкостью высока активность фермента карбоангидразы.

Эндотелий сосудов, граничащий с внеклеточной жидкостью в области хеморецептивных полей не проницаем для ионов Н + и НСО 3 - но хорошо проницаем для СО 2 .

Приблизительно схему событий можно представить следующим образом: 1) повышение концентрации СО 2 в крови и его свободная диффузия через зону с высокой карбоангидразной активностью 2) СО 2 соединяется с Н 2 О под влиянием карбоангидразы, затем диссоциирует с освобождением Н +. 3) накопление во внеклеточной жидкости ионов водорода приводит к повышению активности мультиполярных нейронов.

Одновременно происходит уменьшение разности потенциалов между кровью и ликвором. Эти события служат мощным афферентным стимулом для дыхательного центра. Следует обратить внимание на высокую чувствительность всех структур к изменению рН - изменение потенциала и дыхательная реакция отмечаются при снижении рН крови на 0.01 единицу. Высока и надежность этих структур - мультиполярные нейроны способны изменять свою активность в диапазоне рН от 7 до 7,8 , такие изменение в норме невозможны.

Рисунок 16 Локализация мультиполярных нейронов (хемосенсоров) относительно внутренних сред мозга: крови, внеклеточной жидкости мозга и ликвора.

Н1 – крупный мультиполярный нейрон, Н2 мелкий мультиполярный нейрон,

Итак, важнейшим физиологическим свойством центрального хеморецептивного механизма является изменение активности нейронов в прямой зависимости от концентрации ионов водорода во внеклеточной жидкости мозга. Основная задача этого механизма - информировать дыхательный центр об отклонения рН, а следовательно, и концентрации СО 2 в крови. Обратите внимание на то, что саморегулирование в этом случае будет осуществляться по принципу отклонения от физиологической нормы.

Регуляция дыхания - это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.

Дыхательный центр - это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.

Дыхание - процесс автоматический, но он поддается произвольной регуляции. Без такой регуляции невозможна была бы речь. Вместе с тем, управление дыханием построено на рефлекторных принципах: как безусловно-рефлекторных, так и условно-рефлекторных.

Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.

Пейсмейкерные нейроны (нейроны - "создатели ритма") обеспечивают автоматическое возникновение возбуждения в дыхательном центре даже в том случае, если не будут раздражаться дыхательные рецепторы.

Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.

В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха . Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).

Функции дыхательного центра
- Обеспечение вдоха.
- Обеспечение выдоха.
- Обеспечение автоматии дыхания.
- Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.

Уровни дыхательного центра

1. Спинальный (в спинном мозге). В спинном мозге расположены центры, координирующие деятельность диафрагмы и дыхательных мышц - L-мотонейроны в передних рогах спинного мозга. Диафрагмальные нейроны - в шейных сегментах, межреберные - в грудных. При перерезке проводящих путей между спинным и головным мозгом дыхание нарушается, т.к. спинальные центры не обладают автономностью (т.е. самостоятельностью) и не поддерживают автоматию дыхания.

2. Бульбарный (в продолговатом мозге) - основной отдел дыхательного центра. В продолговатом мозге и варолиевом мосту располагаются 2 основных вида нейронов дыхательного центра - инспираторные (вдыхательные) и экспираторные (выдыхательные).

Инспираторные (вдыхательные) - возбуждаются за 0,01-0,02 с до начала активного вдоха. Во время вдоха у них увеличивается частота импульсов, а затем мгновенно прекращается. Подразделяются на несколько видов.

Виды инспираторных нейронов

По влиянию на другие нейроны:
- тормозные (прекращают вдох)
- облегчающие (стимулируют вдох).
По времени возбуждения:
- ранние (за несколько сотых долей секунды до вдоха)
- поздние (активны в процессе всего вдоха).
По связям с экспираторными нейронами:
- в бульбарном дыхательном центре
- в ретикулярной формации продолговатого мозга.
В дорсальном ядре 95% - инспираторные нейроны, в вентральном - 50%. Нейроны дорсального ядра связаны с диафрагмой, а вентрального - с межрёберными мышцами.

Экспираторные (выдыхательные) - возбуждение возникает за несколько сотых долей секунды до начала выдоха.

Различают:
- ранние,
- поздние,
- экспираторно-инспираторные.
В дорсальном ядре 5% нейронов являются экспираторными, а в вентральном - 50%. В целом экспираторных нейронов значительно меньше, чем инспираторных. Получается, что вдох важнее выдоха.

Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.

Взаимодействие с другими центрами мозга

Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.

На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр , расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха . Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.

3. Супрапонтиальный (т.е. "надмостовый") - включает в себя несколько областей промежуточного мозга:
Гипоталамическая область - при раздражении вызывает гиперпноэ - увеличение частоты дыхательных движений и глубины дыхания. Задняя группа ядер гипоталамуса вызывает гиперпноэ, передняя группа действует противоположным образом. Именно засчёт дыхательного центра гипоталамуса дыхание реагирует на температуру окружающей среды.
Гипоталамус совместно с таламусом обеспечивает изменение дыхания при эмоциональных реакциях .
Таламус - обеспечивает изменение дыхания при болевых ощущениях.
Мозжечок - приспосабливает дыхание к мышечной активности.

4. Моторная и премоторная зона коры больших полушарий головного мозга. Обеспечивает условно-рефлекторную регуляцию дыхания. Всего за 10-15 сочетаний можно выработать дыхательный условный рефлекс. Засчёт этого механизма, например, у спортсменов перед стартом возникает гиперпноэ.
Асратян Э.А. в своих опытах удалял у животных эти области коры. При физической нагрузке у них быстро возникала одышка - диспноэ, т.к. им не хватало этого уровня регуляции дыхания.
Дыхательные центры коры дают возможность произвольного изменения дыхания.

Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.

Гуморальные влияния на дыхательный центр
Опыт Фредерика (1890). Он сделал перекрестное кровообращение у двух собак - голова каждой собаки получила кровь от туловища другой собаки. У одной собаки зажимали трахею, следовательно, возрастал уровень углекислого газа и понижался уровень кислорода в крови. После этого другая собака начинала часто дышать. Возникало гиперпноэ. В следствие этого в крови уменьшался уровень СО2 и возрастал уровень О2. Эта кровь поступала к голове первой собаки и тормозила ее дыхательный центр. Гуморальное торможение дыхательного центра могло довести эту первую собаку до апноэ, т.е. остановки дыхания.
Факторы, гуморально влияющие на дыхательный центр:
Избыток СО2 - гиперкарбия, вызывает активацию дыхательного центра.
Недостаток О2 - гипоксилия, вызывает активацию дыхательного центра.
Ацидоз - накопление ионов водорода (закисление), активирует дыхательный центр.
Недостаток СО2 - торможение дыхательного центра.
Избыток О2 - торможение дыхательного центра.
Алколоз - +++торможение дыхательного центра
Сами нейроны продолговатого мозга засчет высокой активности вырабатывают много СО2 и локально воздействуют на самих себя. Положительная обратная связь (сами себя усиливают).
Кроме прямого действия СО2 на нейроны продолговатого мозга существует рефлекторное действие через рефлексогенные зоны сердечно-сосудистой системы (рефлексы Рейманса). При гиперкарбии возбуждаются хеморецепторы и от них возбуждение поступает к хемочувствительным нейронам ретикулярной формации и к хемочувствительным нейронам коры головного мозга.
Рефлекторное влияние на дыхательный центр.
1. Постоянное влияние.
Рефлекс Гелинга-Брейера. Механорецепторы в тканях легких и дыхательных путей возбуждаются при растяжении и спадении легких. Они чувствительны к растяжению. От них импульсы по вакусу (блуждающий нерв) идет в продолговатый мозг к инспираторным L-мотонейронам. Вдох прекращается и начинается пассивный выдох. Этот рефлекс обеспечивает смену вдоха и выдоха и поддерживает активность нейронов дыхательного центра.
При перегрузке вакуса и перерезке рефлекс отменяется: снижается частота дыхательных движений, смена вдоха и выдоха осуществляется резко.
Другие рефлексы:
растяжение легочной ткани тормозит последующий вдох (экспираторно-облегчающий рефлекс).
Растяжение легочной ткани при вдохе сверх нормального уровня вызывает дополнительный вздох (парадоксальный рефлекс Хеда).
Рефлекс Гейманса - возникает от хеморецепторов сердечно-сосудистой системы на концентрацию СО2 и О2.
Рефлекторное влияние с пропреорецепторов дыхательных мышц - при сокращении дыхательных мышц возникает поток импульсов от пропреорецепторов к ЦНС. По принципу обратной связи изменяется активность инспираторных и экспираторных нейронов. При недостаточном сокращении инспираторных мышц возникает респираторно-облегчающий эффект и вдох усиливается.
2. Непостоянные
Ирритантные - расположены в дыхательных путях под эпителием. Являются одновременно механо- и хеморецепторами. Имеют очень высокий порог раздражения, поэтому работают в экстраординарных случаях. Например, при понижении легочной вентиляции объем легких уменьшается, возбуждаются ирритантные рецепторы и вызывают рефлекс форсированного вдоха. В качестве хеморецепторов эти же рецепторы возбуждаются биологически активными веществами - никотин, гистамин, простогландин. Возникает чувство жжения, першения и в ответ - защитный кашлевой рефлекс. В случае патологии ирритантные рецепторы могут вызвать спазм дыхательных путей.
в альвеолах рецепторы юкста-альвеолярные и юкста-капиллярные реагируют на объем легких и биологически активные вещества в капиллярах. Повышают частоту дыхания и сокращают бронхи.
На слизистых оболочках дыхательных путей - экстерорецепторы. Кашель, чихание, задержка дыхания.
На коже - тепловые и холодовые рецепторы. Задержка дыхания и активация дыхания.
Болевые рецепторы - кратковременная задержка дыхания, затем усиление.
Энтерорецепторы - с желудка.
Пропреорецепторы - со скелетных мышц.
Механорецепторы - с сердечно-сосудистой системы.