Химические свойства белков горение. Важнейшие химические и физические свойства белков

Белки

– биополимеры, мономерами которых служат α-аминокислоты, связанные между собой пептидными связями.
Выделяют аминокислоты гидрофобные и гидрофильные , которые, в свою очередь, делятся на кислые, основные и нейтральные. Особенностью a-аминокислот является их способность взаимодействовать друг с другом с образованием пептидов.
Выделяют:

  1. дипептиды (карнозин и ансерин , локализующиеся в митохондриях; будучи АО, предотвращающие их набухание);

  2. олигопептиды, включающие до 10 аминокислотных остатков. Например: трипептид глутатион служит одним из главных восстановителей в АРЗ, которая регулирует интенсивность ПОЛ. Вазопрессин и окситоцин — гормоны задней доли гипофиза, включают 9 аминокислот.

  3. Существуют полипептид ы и в зависимости от проявляемых ими свойств их относят к различного класса соединениям. Медики считают, если парентеральное введение полипептида вызывает отторжение (аллергическую реакцию), то его следует считать белком ; если же подобного явления не наблюдается, то термин остаётся прежним (полипептид ). Гормон аденогипофиза АКТГ , влияющий на секрецию ГКС в коре надпочечников, относят к полипептидам (39 аминокислот), а инсулин , состоящий из 51 мономера и способный спровоцировать иммунный ответ, — протеин.

Уровни организации белковой молекулы.

Любой полимер стремится принять более энергетически выгодную конформацию, которая удерживается за счёт образования добавочных связей, что осуществляется с помощью группировок радикалов аминокислот. Принято выделять четыре уровня структурной организации протеинов. Первичная структура – последовательность аминокислот в полипептидной цепи, ковалентно связанных пептидными (амидными ) связями, а соседние радикалы находятся под углом 180 0 (транс-форма). Наличие более 2-х десятков различных протеиногенных аминокислот и способность их связываться в разной последовательности и обусловливает многообразие белков в природе и выполнение ими самых различных функций. Первичная структура протеинов отдельного человека генетически заложена и передаётся от родителей с помощью полинуклеотидов ДНК и РНК. В зависимости от природы радикалов и с помощью специальных белков – шаперонов синтезируемая полипептидная цепь укладывается в пространстве – фолдинг белков .

Вторичная структура белка имеет вид спирали либо β-складчатого слоя. Фибриллярные белки (коллаген, эластин) имеют бета-структуру . Чередование спирализованных и аморфных (неупорядоченных) участков позволяет им сближаться и с помощью шаперонов формируют более плотно упакованную молекулу — третичную структуру.

Объединение нескольких полипептидных цепей в пространстве и создание в функциональном отношении макромолекулярного образования формирует четвертичную структуру белка. Такие мицеллы принято называть олиго- или мультимерами , а их компоненты – субъединицами (протомерами ). Белок с четвертичной структурой обладает биологической активностью только при условии, если все субъединицы его связаны между собой.

Таким образом, любой природный протеин характеризуется уникальной организацией, которая и обеспечивает его физико-химические, биологические и физиологические функции.

Физико-химические свойства.

Белки обладают большими размерами и высокой молекулярной массой, которая колеблется от 6000 – 1000000 Дальтон и выше в зависимости от количества аминокислот и числа протомеров. Молекулы их имеют различные формы: фибриллярную – в ней сохраняется вторичная структура; глобулярную – имеющую более высокую организацию; и смешанную. Растворимость белков зависит от размеров и формы молекулы, от природы радикалов аминокислот. Глобулярные белки хорошо растворимы в воде, а фибриллярные или мало- или не растворимы.

Свойства белковых растворов: имеют низкое осмотическое, но высокое онкотическое давление; высокую вязкость; слабую способность к диффузии; часто мутные; опалесцируют (явление Тиндаля ), — всё это используется при выделении, очистке, изучении нативных белков. В основе разделения компонентов биологической смеси лежит их осаждение. Обратимое осаждение называют высаливанием , развивающимся при действии солей щелочных металлов, солей аммония, разбавленных щелочей и кислот. Его используют для получения чистых фракций, сохранивших нативные структуру и свойства.

Степень ионизации белковой молекулы и её стабильность в растворе определяются рН среды. Значение рН раствора, при котором заряд частицы стремится к нулю, называют изоэлектрической точкой . Такие молекулы способны перемещаться в электрическом поле; скорость движения прямо пропорциональна величине заряда и обратно пропорциональна массе глобулы, что лежит в основе электрофореза для разделения белков сыворотки.

Необратимое осаждение — денатурация . Если реагент проникает вглубь мицеллы и разрушает добавочные связи, уложенная компактно нить разворачивается. Сближающиеся молекулы за счёт высвободившихся группировок склеиваются и выпадают в осадок или флотируют и теряют свои биологические свойства. Денатурирующие факторы: физические (температура выше 40 0 , различные виды излучений: рентгеновское, α-, β-, γ, УФЛ); химические (концентрированные кислоты, щёлочи, соли тяжёлых металлов, мочевину, алкалоиды, некоторые лекарства, яды). Денатурация применяется в асептике и антисептике, а также в биохимических исследованиях.

Белки обладают различными свойствами (Табл. 1.1).

Таблица 1.1

Биологические свойства протеинов

Специфичность обусловливается уникальным аминокислотным составом каждого белка, что детерминировано генетически и обеспечивает адаптацию организма к изменяющимся условиям внешней среды, но с другой стороны — требует учитывать этот факт при переливании крови, трансплантации органов и тканей.
Лигандность способность радикалов аминокислот образовывать связи с различными по природе веществами (лигандами ): углеводами, липидами, нуклеотидами, минеральными соединениями. Если связь прочная, то этот комплекс, называемый сложным белком , выполняет предназначенные для него функции.
Кооперативность характерна для белков, имеющих четвертичную структуру. Гемоглобин состоит из 4-х протомеров, каждый из которых соединён с гемом, способным связываться с кислородом. Но гем первой субъединицы это делает медленно, а каждый последующий – легче.
Полифункциональность свойство одного белка выполнять самые разные функции. Миозин – сократительный протеин мышц обладает также каталитической активностью, гидролизуя при необходимости АТФ. Вышеназванный гемоглобин тоже способен работать ферментом — каталазой.
Комплементарность Все белки так укладываются в пространстве, что формируются участки, комплементарные другим соединениям, что обеспечивает выполнение различных функций (образование комплексов энзим-субстрат, гормон-рецептор, антиген-антитело.

Классификация белков

Выделяют простые белки , состоящие только из аминокислот, и сложные , включающие простетическую группу . Простые белки делятся на глобулярные и фибриллярные , а также в зависимости от аминокислотного состава на основные, кислые, нейтральные . Глобулярные основные белки — протамины и гистоны . Имеют низкую молекулярную массу, за счет наличия аргинина и лизина у них резко выражена основность, благодаря «-» заряду, легко взаимодействуют с полианионами нуклеиновых кислот. Гистоны, связываясь с ДНК, помогают компактно укладываться в ядре и регулировать синтез белка. Эта фракция гетерогенна и при взаимодействии друг с другом, образуют нуклеосомы , на которые наматываются нити ДНК.

К кислым глобулярным белкам принадлежат альбумины и глобулины , содержащиеся во внеклеточных жидкостях (плазме крови, ликворе, лимфе, молоке) и отличающиеся по массе и размерам. Альбумины имеют молекулярную массу 40-70 тыс. Д в отличие от глобулинов (свыше 100 тыс.Д). Первые включают глутаминовую кислоту, что создаёт большой «-» заряд и гидратную оболочку, позволяющую иметь высокую стабильность их раствора. Глобулины — менее кислые белки, поэтому легко высаливаются и являются гетерогенными, с помощью электрофореза делятся на фракции. Способны связываться с различными соединениями (гормонами, витаминами, ядами, лекарствами, ионами), обеспечивая их транспорт. С их помощью стабилизируются важные параметры гомеостаза: рН и онкотическое давление. Выделяют также иммуноглобулины (IgA, IgM, IgD, IgE, IgG), которые служат антителами, а также белковые факторы свёртывания крови.

В клинике используют так называемый белковый коэффициент (БК) , представляющий отношение концентрации альбуминов к концентрации глобулинов:

Его величины колеблются в зависимости от патологических процессов.

Фибриллярные белки делят на две группы: растворимые (актин, миозин, фибриноген) и нерастворимые в воде и водно-солевых растворах (белки опорных — коллаген, эластин, ретикулин и покровных — кератин тканей).

В основе классификации сложных белков лежат особенности строения простетической группы. Металлопротеин ферритин , богатый катионами железа, и локализующийся в клетках системы мононуклеарных фагоцитов (гепатоцитах, спленоцитах, клетках костного мозга), является депо данного металла. Избыток железа приводит к накоплению в тканях – гемосидерина , провоцируя развитие гемосидероза . Металлогликопротеиины — трансферрин и церулоплазмин плазмы крови, служащие транспортными формами ионов железа и меди соответственно, выявлена их антиоксидантная активность. Работа многих ферментов зависит от наличия в молекулах ионов металлов: для ксантиндегидрогеназы — Мо ++ , аргиназы – Mn ++ , а алкогольДГ – Zn ++ .

Фосфопротеины – казеиноген молока, вителлин желтка и овальбумин белка яиц, ихтулин икры рыб. Играют важную роль в развитии зародыша, плода, новорождённого: их аминокислоты необходимы для синтеза собственных белков тканей, а фосфат используется или как звено ФЛ – обязательных структур мембран клеток, или как важнейший компонент макроэргов – источников энергии в генезе различных соединений. За счет фосфорилирования-дефосфорилирования ферменты регулируют свою активность.

В состав нуклеопротеинов входят ДНК и РНК. В качестве апопротеинов выступают гистоны или протамины. Любая хромосома – это комплекс одной молекулы ДНК с многими гистонами. С помощью нуклеосом происходит накручивание нити данного полинуклеотида, что уменьшает его объём.

Гликопротеины включают в свой состав различные углеводы (олигосахариды, ГАГ типа гиалуроновой кислоты, хондроитин-, дерматан-, кератан-, гепарансульфатов). Слизь, богатая гликопротеинами, обладает высокой вязкостью, защищая стенки полых органов от действия раздражителей. Гликопротеины мембран обеспечивают межклеточные контакты, работу рецепторов, в плазмолеммах эритроцитов отвечают за группоспецифичность крови. Антитела (олигосахариды) взаимодействуют с конкретными антигенами. В основе функционирования интерферонов, системы комплемента лежит тот же принцип. Церулоплазмин и трансферрин, транспортирующие в плазме крови ионы меди и железа, являются тоже гликопротеинами. К этому классу белков принадлежат некоторые гормоны аденогипофиза.

Липопротеины в составе простетической группы содержат различные липиды (ТАГ, свободный ХС, его эфиры, ФЛ). Несмотря на присутствие самых различных веществ, принцип строения мицелл ЛП сходен (Рис. 1.1). Внутри данной частицы находится жировая капля, содержащая неполярные липиды: ТАГ и эфиры ХС. Снаружи ядро окружено однослойной мембраной, образованной ФЛ, белком (аполипопротеином) и ХС. Некоторые белки интегральны и не могут быть отделены от липопротеина, а другие способны переноситься от одного комплекса к другому. Полипептидные фрагменты формируют структуру частицы, взаимодействуют с рецепторами на поверхности клеток, определяя, каким тканям он необходим, служат ферментами или их активаторами, модифицирующими ЛП. Методом ультрацентрифугирования выделили следующие типы липопротеинов: ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП . Каждый из типов ЛП образуется в разных тканях и обеспечивает транспорт определённых липидов в биологических жидкостях. Молекулы этих протеинов хорошо растворимы в крови, т.к. имеют небольшие размеры и отрицательный заряд на поверхности. Часть ЛП способна легко диффундировать через интиму артерий, питая её. Хиломикроны служат перевозчиками экзогенных липидов, продвигаясь сначала по лимфе, а затем по кровотоку. По мере продвижения ХМ теряют свои липиды, отдавая их клеткам. ЛПОНП служат основными транспортными формами синтезированных в печени липидов, в основном ТАГ, а доставка эндогенного ХС из гепатоцитов к органам и тканям осуществляется ЛПНП . По мере того, как они отдают липиды клеткам–мишеням, плотность их увеличивается (преобразуются в ЛППП ). Катаболическая фаза обмена ХС осуществляется ЛПВП , которые переносят его из тканей в печень, откуда он в составе желчи выводится через ЖКТ из организма.

У хромопротеинов простетической группой может быть вещество, имеющее окраску. Подкласс — гемопротеиды , небелковой частью служит гем . Гемоглобин эритроцитов обеспечивает газообмен, имеет четвертичную структуру, состоит из 4-х разных у эмбриона, плода, ребёнка полипептидных цепей (Раздел IV. Глава 1). В отличие от Hb миоглобин имеет один гем и одну полипептидную цепь, свёрную в глобулу. Сродство миоглобина к кислороду выше, чем у гемоглобина, поэтому он способен принимать газ, депонировать и отдавать митохондриям по мере необходимости. К гемсодержащим белкам относятся каталаза, пероксидаза , являющиеся ферментами АРЗ; цитохромы – компоненты ЭТЦ, отвечающей за основной биоэнергетический процесс в клетках. Среди дегидрогеназ, участников тканевого дыхания, находят флавопротеины – хромопротеины, имеющие жёлтую (flavos — жёлтый) окраску за счёт наличия в них флавоноидов – компонентов ФМН и ФАД. Родопсин – сложный белок, простетической группой которого служит активная форма витамина А – ретинол жёлто-оранжевого цвета. Зрительный пурпур – основное светочувствительное вещество палочек сетчатки глаза, обеспечивает восприятие света в сумерках.

Функции белков

Структурная

(пластическая)

Протеины составляют основу клеточных и органоидных мембран, а также составляют основу ткани (коллаген в соединительной ткани).
Каталитическая Все ферменты – белки — биокатализаторы.
Регуляторная Многие гормоны, секретируемые передней долей гипофиза, паращитовидными железами имеют белковую природу.
Транспортная В плазме крови альбумины обеспечивают перенос ВЖК, билирубина. Трансферрин отвечает за доставку катионов железа.
Дыхательная Мицеллы гемоглобина , локализующиеся в эритроцитах, способны связываться с различными газами, в первую очередь, с кислородом, углекислотой, участвуя непосредственно в газообмене.
Сократительная Специфические белки миоцитов (актин и миозин ) — участники сокращения и расслабления. Подобный эффект в момент расхождения хромосом при митозе проявляет протеин цитоскелета тубулин .
Защитная Белковые факторы свёртывания крови защищают организм от неадекватных кровопотерь. Иммунные белки (γ-глобулины, интерферон, протеины системы комплемента) борются с поступающими в организм чужеродными веществами – антигенами .
Гомеостатическая Вне- и внутриклеточные белки могут удерживать на постоянном уровне рН (буферные системы ) и онкотическое давление среды.
Рецепторная Гликопротеины клеточных и органоидных мембран, локализуясь на наружных участках, воспринимают различные сигналы регуляции.
Зрительная Зрительные сигналы в сетчатке принимает белок – родопсин .
Питательная Альбумины и глобулины плазмы крови служат резервами аминокислот
Белки хромосом (гистоны, протамины ) участвуют в создании баланса экспрессии и репрессии генетической информации.
Энергетическая При голодании или патологических процессах, когда нарушается использование углеводов с энергетической целью (при сахарном диабете) усиливается тканевой протеолиз, продукты которого аминокислоты (кетогенные ), распадаясь, служат источниками энергии.

Белки являются биополимерами, мономерами которых являются остатки альфа-аминокислот, соединенные между собой посредством пептидных связей. Аминокислотная последовательность каждого белка строго определена, в живых организмах она зашифрована посредством генетического кода, на основе считывания которого и происходит биосинтез белковых молекул. В построении белков участвует 20 аминокислот.

Различают следующие виды структуры белковых молекул:

  1. Первичная. Представляет собой аминокислотную последовательность в линейной цепи.
  2. Вторичная. Это более компактная укладка полипептидных цепей при помощи формирования водородных связей между пептидными группами. Есть два варианта вторичной структуры – альфа-спираль и бета-складчатость.
  3. Третичная. Представляет собой укладку полипептидной цепочки в глобулу. При этом формируются водородные, дисульфидные связи, также стабилизация молекулы реализуется благодаря гидрофобным и ионным взаимодействиям аминокислотных остатков.
  4. Четвертичная. Белок состоит из нескольких полипептидных цепей, которые взаимодействуют между собой посредством нековалентных связей.

Таким образом, соединенные в определенной последовательности аминокислоты образуют полипептидную цепь, отдельные части которой сворачиваются в спираль или формируют складки. Такие элементы вторичной структур образуют глобулы, формируя третичную структуру белка. Отдельные глобулы взаимодействуют между собой, образуя сложные белковые комплексы с четвертичной структурой.

Классификация белков

Существует несколько критериев, по которым можно классифицировать белковые соединения. По составу различают простые и сложные белки. Сложные белковые вещества содержат в своем составе неаминокислотные группы, химическая природа которых может быть различной. В зависимости от этого выделяют:

  • гликопротеины;
  • липопротеины;
  • нуклеопротеины;
  • металлопротеиды;
  • фосфопротеины;
  • хромопротеиды.

Также существует классификация по общему типу строения:

  • фибриллярные;
  • глобулярные;
  • мембранные.

Протеинами называют простые (однокомпонентные) белки, состоящие лишь из остатков аминокислот. В зависимости от растворимости они делятся на следующие группы:

Подобная классификация не совсем точна, ведь согласно последним исследованиям многие простые белки связаны с минимальным количеством небелковых соединений. Так, в состав некоторых протеинов входят пигменты, углеводы, иногда липиды, что делает их больше похожими на сложные белковые молекулы.

Физико-химические свойства белка

Физико-химические свойства белков обусловлены составом и количеством входящих в их молекулы остатков аминокислот. Молекулярные массы полипептидов сильно колеблются: от нескольких тысяч до миллиона и более. Химические свойства белковых молекул разнообразны, включают в себя амфотерность, растворимость, а также способность к денатурации.

Амфотерность

Поскольку в состав белков входят и кислые, и основные аминокислоты, то всегда в составе молекулы будут свободные кислые и свободные основные группы (СОО- и NН3+ соответственно). Заряд определяется соотношением основных и кислых аминокислотных групп. По этой причине белки заряжены “+”, если уменьшается рН, и наоборот, “-”, если рН увеличивается. В случае, когда рН соответствует изоэлектрической точке, белковая молекула будет иметь нулевой заряд. Амфотерность важна для осуществления биологических функций, одной из которых является поддержание уровня рН в крови.

Растворимость

Классификация белков по свойству растворимости уже была приведена выше. Растворимость белковых веществ в воде объясняется двумя факторами:

  • заряд и взаимное отталкивание белковых молекул;
  • формирование гидратной оболочки вокруг белка – диполи воды взаимодействуют с заряженными группами на внешней части глобулы.

Денатурация

Физико-химическое свойство денатурации представляет собой процесс разрушения вторичной, третичной структуры белковой молекулы под влиянием ряда факторов: температуры, действии спиртов, солей тяжелых металлов, кислот и других химических агентов.

Важно! Первичная структура при денатурации не разрушается.

Химические свойства белков, качественные реакции, уравнения реакций

Химические свойства белков можно рассмотреть на примере реакций их качественного обнаружения. Качественные реакции позволяют определить наличие пептидной группы в соединении:

1. Ксантопротеиновая. При действии на белок азотной кислоты высокой концентрации образуется осадок, который при нагревании приобретает желтый цвет.

2. Биуретовая. При действии на слабощелочной раствор белка сульфата меди образуются комплексные соединения между ионами меди и полипептидами, что сопровождается окрашиванием раствора в фиолетово-синий цвет. Реакция используется в клинической практике для определения концентрации белка в сыворотке крови и других биологических жидкостях.

Еще одним важнейшим химическим свойством является обнаружение серы в белковых соединениях. С этой целью щелочной раствор белка нагревают с солями свинца. При этом получают черный осадок, содержащий сульфид свинца.

Биологическое значение белка

Благодаря своим физическим и химическим свойствам белки выполняют большое количество биологических функций, в перечень которых входят:

  • каталитическая (белки-ферменты);
  • транспортная (гемоглобин);
  • структурная (кератин, эластин);
  • сократительная (актин, миозин);
  • защитная (иммуноглобулины);
  • сигнальная (рецепторные молекулы);
  • гормональная (инсулин);
  • энергетическая.

Белки важны для организма человека, поскольку участвуют в образовании клеток, обеспечивают сокращение мышц у животных, вместе с сывороткой крови переносят многие химические соединения. Помимо этого, белковые молекулы являются источником незаменимых аминокислот и осуществляют защитную функцию, участвуя в выработке антител и формировании иммунитета.

ТОП-10 малоизвестных фактов о белке

  1. Белки начали изучать с 1728 года, именно тогда итальянец Якопо Бартоломео Беккари выделил белок из муки.
  2. Сейчас широкое распространение получили рекомбинантные белки. Их синтезируют путем модификации генома бактерий. В частности, таким способом получают инсулин, факторы роста и другие белковые соединения, которые используют в медицине.
  3. У антарктических рыб были обнаружены белковые молекулы, предотвращающие замерзание крови.
  4. Белок резилин отличается идеальной эластичностью и является основой мест крепления крыльев насекомых.
  5. В организме есть уникальные белки шапероны, которые способны восстанавливать корректную нативную третичную или четвертичную структуру других белковых соединений.
  6. В ядре клетки присутствуют гистоны – белки, которые принимают участие в компактизации хроматина.
  7. Молекулярную природу антител – особых защитных белков (иммуноглобулинов) – начали активно изучать с 1937 года. Тиселиус и Кабат применяли электрофорез и доказали, что у иммунизированных животных увеличена гамма-фракция, а после абсорбции сыворотки провоцирующим антигеном, распределение белков по фракциям возвращалось к картине интактного животного.
  8. Яичный белок – яркий пример реализации белковыми молекулами резервной функции.
  9. В молекуле коллагена каждый третий аминокислотный остаток образован глицином.
  10. В составе гликопротеинов 15-20% составляют углеводы, а в составе протеогликанов их доля – 80-85%.

Заключение

Белки – сложнейшие соединения, без которых сложно представить жизнедеятельность любого организма. Выделено более 5000 белковых молекул, но каждый индивидуум обладает собственным набором белков и этим отличается от других особей своего вида.

Важнейшие химические и физические свойства белков обновлено: Октябрь 29, 2018 автором: Научные Статьи.Ру

Аминокислотный состав и пространственная организация каждого белка определяют его физико-химические свойства. Белки обладают кислотно-основными, буферными, коллоидными и осмотическими свойствами.

Белки как амфотерные макромолекулы

Белки являются амфотерными полиэлектролитами, т.е. сочетают в себе, подобно аминокислотам, кислотные и основные свойства. Однако природа групп, придающих амфотерные свойства белкам, далеко не та же, что у аминокислот. Кислотно-основные свойства аминокислот обусловлены прежде всего наличием α-амино- и α-карбоксильной групп (кислотно-основная пара). В молекулах белков эти группы участвуют в образовании пептидных связей, а амфотерность белкам придают кислотно-основные группы боковых радикалов аминокислот, входящих в белок. Разумеется, в каждой молекуле нативного белка (полипептидной цепи) имеется как минимум по одной концевой α-амино- и α-карбоксильной группе (если у белка только третичная структура). У белка с четвертичной структурой число концевых групп -NН 2 и -СООН равно числу субъединиц, или протомеров. Однако столь незначительное число этих групп не может объяснить амфотерность макромолекул белка. Поскольку большая часть полярных групп находится на поверхности глобулярных белков, то именно они определяют кислотно-основные свойства и заряд белковой молекулы. Кислотные свойства белку придают кислые аминокислоты (аспарагиновая, глутаминовая и аминолимонная), а щелочные свойства - основные аминокислоты (лизин, аргинин, гистидин). Чем больше кислых аминокислот содержится в белке, тем ярче выражены его кислотные свойства, и чем больше входит в состав белка основных аминокислот, тем сильнее проявляются его основные свойства. Слабая диссоциация SН-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на амфотерность белков.

Буферные свойства . Белки хотя и обладают свойствами буфера, но емкость их при физиологических значениях рН ограничена. Исключение составляют белки, содержащие много гистидина, так как только боковая группа гистидина обладает буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков очень мало. Гемоглобин чуть ли не единственный белок, содержащий до 8% гистидина, является мощным внутриклеточным буфером в эритроцитах, поддерживая рН крови на постоянном уровне.

Заряд белковой молекулы зависит от содержания в ней кислых и основных аминокислот, а точнее, от ионизации кислых и основных групп бокового радикала этих аминокислот. Диссоциация СООН-групп кислых аминокислот вызывает появление отрицательного заряда на поверхности белка, а боковые радикалы щелочных аминокислот несут положительный заряд (за счет присоединения Н + к основным группам). В нативной молекуле белка заряды распределяются асимметрично в зависимости от укладки полипептидной цепи в пространстве. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. является полианионом, и наоборот, если преобладают основные аминокислоты, то она заряжена положительно, т. е. ведет себя как поликатион.

Суммарный заряд белковой молекулы, естественно, зависит от рН среды: в кислой среде он положителен, в щелочной отрицателен. То значение рН, при котором белок имеет суммарный нулевой заряд, называется изоэлектрической точкой данного белка. В этой точке белок не обладает подвижностью в электрическом поле. Изоэлектрическая точка каждого белка определяется соотношением кислых и основных групп боковых радикалов аминокислот: чем выше соотношение кислые/основные аминокислоты в белке, тем ниже его изоэлектрическая точка. У кислых белков рН 1 < 7, у нейтральных рН 1 около 7, а у основных рН 1 > 7. При значениях рН среды ниже его изоэлектрической точки белок будет нести положительный заряд, а выше - отрицательный заряд. Усредненная изоэлектрическая точка всех белков цитоплазмы лежит в пределах 5,5. Следовательно, при физиологическом значении рН (около 7,0 - 7,4) клеточные белки имеют общий отрицательный заряд. Избыток отрицательных зарядов белков внутри клетки уравновешивается, как уже говорилось, неорганическими катионами.

Знание изоэлектрической точки очень важно для понимания стабильности белков в растворах, так как в изоэлектрическом состоянии белки наименее устойчивы. Незаряженные частицы белка могут слипаться друг с другом и выпадать в осадок.

Коллоидные и осмотические свойства белков

Поведение белков в растворах имеет некоторые особенности. Обычные коллоидные растворы устойчивы только в присутствии стабилизатора, который препятствует осаждению коллоидов, располагаясь на границе раздела "растворенное вещество - растворитель".

Водные растворы белков являются устойчивыми и равновесными, они со временем не выпадают в осадок (не коагулируют) и не требуют присутствия стабилизаторов. Белковые растворы гомогенны и, в сущности, их можно отнести к истинным растворам. Однако высокая молекулярная масса белков придает их растворам многие свойства коллоидных систем:

  • характерные оптические свойства (опалесценция растворов и способность их рассеивать лучи видимого света) [показать] .

    Оптические свойства белков . Растворы белков, особенно концентрированные, обладают характерной опалесценцией. При боковом освещении раствора белка лучи света в нем становятся видимыми и образуют светящийся конус или полосу - эффект Тиндаля (в сильно разбавленных растворах белка не видна опалесценция и почти отсутствует светящийся конус Тиндаля). Объясняется этот светорассеивающий эффект дифракцией лучей света частицами белка в растворе. Считается, что в протоплазме клетки белок находится в виде коллоидного раствора - золя. Способность белков и других биологических молекул (нуклеиновых кислот, полисахаридов и т. д.) рассеивать свет используется при микроскопическом изучении клеточных структур: в темном поле микроскопа коллоидные частицы видны как светлые вкрапления в цитоплазме.

    Светорассеивающую способность белков и других высокомолекулярных веществ используют для их количественного определения методом нефелометрии, сравнивая интенсивность светорассеивания взвешенными частицами исследуемого и стандартного золя.

  • малая скорость диффузии [показать] .

    Малая скорость диффузии . Диффузией называется самопроизвольное перемещение молекул растворенных веществ вследствие градиента концентраций (от зон с высокой концентрацией к зонам с низкой концентрацией). Белки имеют ограниченную скорость диффузии в сравнении с обычными молекулами и ионами, которые перемещаются в сотни и тысячи раз быстрее, чем белки. Скорость диффузии белков больше зависит от формы их молекул, чем от молекулярной массы. Глобулярные белки в водных растворах подвижнее фибриллярных белков.

    Диффузия белков имеет важное значение для нормального функционирования клетки. Синтез белков в любом участке клетки (там, где имеются рибосомы) мог бы привести при отсутствии диффузии к скоплению белков в месте их образования. Внутриклеточное распределение белков происходит путем диффузии. Поскольку скорость диффузии белков невысока, она ограничивает скорость процессов, зависящих от функции диффундирующего белка в соответствующем участке клетки.

  • неспособность проникать через полупроницаемые мембраны [показать] .

    Осмотические свойства белков . Белки из-за высокой молекулярной массы не могут диффундировать через полупроницаемую мембрану, тогда как низкомолекулярные вещества легко проходят через такие мембраны. Это свойство белков используют в практике для очистки их растворов от низкомолекулярных примесей. Такой процесс называется диализом.

    Неспособность белков диффундировать через полупроницаемые мембраны вызывает явление осмоса, т. е. перемещение молекул воды через полупроницаемую мембрану в раствор белка. Если раствор белка отделить от воды целлофановой мембраной, то, стремясь к достижению равновесия, молекулы воды диффундируют в раствор белка. Однако перемещение воды в пространство, где находится белок, повышает в нем гидростатическое давление (давление столба воды), которое препятствует дальнейшей диффузии молекул воды к белку.

    То давление, или сила, которое следует приложить, чтобы остановить осмотический ток воды, называется осмотическим давлением. Осмотическое давление в очень разбавленных растворах белка пропорционально молярной концентрации белка и абсолютной температуре.

    Биологические мембраны также непроницаемы для белка, поэтому осмотическое давление, создаваемое белком, зависит от концентрации его внутри и вне клетки. Осмотическое давление, обусловленное белком, называют также онкотическим давлением.

  • высокая вязкость растворов [показать] .

    Высокая вязкость растворов белка . Высокая вязкость характерна не только для растворов белка, но вообще для растворов высокомолекулярных соединений. С увеличением концентрации белка вязкость раствора повышается, поскольку повышаются силы сцепления между молекулами белка. Вязкость зависит от формы молекул. Растворы фибриллярных белков всегда более вязки, чем растворы глобулярных белков. На вязкость растворов сильно влияют температура и присутствие электролитов. С повышением температуры вязкость растворов белка снижается. Добавки некоторых солей, например кальция, повышают вязкость, способствуя сцеплению молекул с помощью кальциевых мостикoв. Иногда вязкость белкового раствора увеличивается настолько, что он теряет текучесть и переходит в гелеобразное состояние.

  • способность к образованию гелей [показать] .

    Способность белков к образованию гелей . Взаимодействие между макромолекулами белка в растворе может привести к образованию структурных сеток, внутри которых находятся захваченные молекулы воды. Такие структурированные системы называются гелями или студнями. Считается, что белок протоплазмы клетки может переходить в гелеобразное состояние. Характерный пример - тело медузы является как бы живым студнем, содержание воды в котором до 90%.

    Гелеобразование легче протекает в растворах фибриллярных белков; их палочковидная форма способствует лучшему контакту концов макромолекул. Это хорошо известно из бытовой практики. Пищевые студни готовят из продуктов (кости, хрящи, мясо), содержащих в большом количестве фибриллярные белки.

    В процессе жизнедеятельности организма гелеобразное состояние белковых структур имеет важное физиологическое значение. Коллагеновые белки костей, сухожилий, хрящей, кожи и т. д. обладают высокой прочностью, упругостью и эластичностью, потому что находятся в гелеобразном состоянии. Отложение минеральных солей при старении снижает их упругость и эластичность. В гелеобразном или студнеобразном виде находится в мышечных клетках актомиозин, выполняющий сократительную функцию.

    В живой клетке происходят процессы, напоминающие переход золь - гель. Протоплазма клетки представляет собой золеподобную вязкую жидкость, в которой обнаруживаются островки гелеподобных структур.

Гидратация белков и факторы, влияющие на их растворимость

Белки - гидрофильные вещества. Если растворять сухой белок в воде, то сначала он, как всякое гидрофильное высокомолекулярное соединение, набухает, а затем молекулы белка начинают постепенно переходить в раствор. При набухании молекулы воды проникают в белок и связываются с его полярными группами. Плотная упаковка полипептидных цепей разрыхляется. Набухший белок можно считать как бы обратным раствором, т. е. раствором молекул воды в высокомолекулярном веществе - белке. Дальнейшее поглощение воды приводит к отрыву молекул белка от общей массы и растворению. Но набухание не всегда ведет к растворению; некоторые белки, например коллаген, так и остаются в набухшем виде, поглотив большое количество воды.

Растворение связано с гидратацией белков, т. е. связыванием молекул воды с белками. Гидратная вода так прочно связана с макромолекулой белка, что отделить ее удается с большим трудом. Это говорит не о простой адсорбции, а об электростатическом связывании молекул воды с полярными группами боковых радикалов кислых аминокислот, несущих отрицательный заряд, и основных аминокислот, несущих положительный заряд.

Однако часть гидратной воды связывается пептидными группами, которые образуют с молекулами воды водородные связи. Например, полипептиды с неполярными боковыми группами тоже набухают, т. е. связывают воду. Так, большое количество воды связывает коллаген, хотя этот белок содержит преимущественно неполярные аминокислоты. Вода, связываясь с пептидными группами, раздвигает вытянутые полипептидные цепи. Однако межцепочечные связи (мостики) не дают молекулам белка отрываться друг от друга и переходить в раствор. При нагревании сырья, содержащего коллаген, межцепочечные мостики в коллагеновых волокнах разрываются и освобожденные полипептидные цепи переходят в раствор. Эта фракция частично гидролизованного растворимого коллагена называется желатиной. Желатина по химическому составу близка к коллагену, легко набухает и растворяется в воде, образуя вязкие жидкости. Характерным свойством желатины является способность к гелеобразованию. Водные растворы желатины широко используются в лечебной практике как плазмозамещающее и кровоостанавливающее средство, а способность к гелеобразованию - при изготовлении капсул в фармацевтической практике.

Факторы, влияющие на растворимость белков . Растворимость разных белков колеблется в широких пределах. Она определяется их аминокислотным составом (полярные аминокислоты придают большую растворимость, чем неполярные), особенностями организации (глобулярные белки, как правило, лучше растворимы, чем фибриллярные) и свойствами растворителя. Например, растительные белки - проламины - растворяются в 60-80%-ном спирте, альбумины - в воде и в слабых растворах солей, а коллаген и кератины нерастворимы в большинстве растворителей.

Стабильность растворам белков придают заряд белковой молекулы и гидратная оболочка. Каждая макромолекула индивидуального белка имеет суммарный заряд одного знака, что препятствует их склеиванию в растворе и выпадению в осадок. Все, что способствует сохранению заряда и гидратной оболочки, облегчает растворимость белка и его устойчивость в растворе. Между зарядом белка (или числом полярных аминокислот в нем) и гидратацией существует тесная связь: чем больше полярных аминокислот в белке, тем больше связывается воды (в расчете на 1 г белка). Гидратная оболочка белка иногда достигает больших размеров, и гидратная вода может составлять до 1/5 его массы.

Правда, некоторые белки гидратируются сильнее, а растворяются хуже. Например, коллаген связывает воды больше, чем многие хорошо растворимые глобулярные белки, но не растворяется. Его растворимости мешают структурные особенности - поперечные связи между полипептидными цепями. Иногда разноименно заряженные группы белка образуют много ионных (солевых) связей внутри молекулы белка или между молекулами белков, что мешает образованию связей между молекулами воды и заряженными группами белков. Наблюдается парадоксальное явление: в белке много анионных или катионных групп, а растворимость его в воде низкая. Межмолекулярные солевые мостики вызывают склеивание молекул белка и их выпадение в осадок.

Какие же факторы среды влияют на растворимость белков и их стабильность в растворах?

  • Влияние нейтральных солей [показать] .

    Нейтральные соли в небольших концентрациях повышают растворимость даже тех белков, которые нерастворимы в чистой воде (например, эвглобулины). Это объясняется тем, что ионы солей, взаимодействуя с противоположно заряженными группами молекул белков, разрушают солевые мостики между молекулами белков. Повышение концентрации солей (увеличение ионной силы раствора) оказывает обратное действие (см. ниже - высаливание).

  • Влияние рН среды [показать] .

    рН среды влияет на заряд белка, а следовательно, на его растворимость. Наименее устойчив белок в изоэлектрическом состоянии, т. е. когда его суммарный заряд равен нулю. Снятие заряда позволяет молекулам белка легко сближаться, склеиваться и выпадать в осадок. Значит, растворимость и устойчивость белка будут минимальны при рН, соответствующем изоэлектрической точке белка.

  • Влияние температуры [показать] .

    Строгой зависимости между температурой и характером растворимости белков не имеется. Одни белки (глобулины, пепсин, фосфорилаза мышц) в водных или солевых растворах с повышением температуры растворяются лучше; другие (альдолаза мышц, гемоглобин и т.д.) хуже.

  • Влияние разнозаряженного белка [показать] .

    Если в раствор белка, являющегося полианионом (кислый белок), добавить белок, являющийся поликатионом (основной белок), то они образуют агрегаты. При этом устойчивость вследствие нейтрализации зарядов теряется и белки выпадают в осадок. Иногда эту особенность используют для выделения нужного белка из смеси белков.

Высаливание

Растворы нейтральных солей широко используются не только для повышения растворимости белка, например при выделении его из биологического материала, но и для избирательного осаждения разных белков, т. е. их фракционирования. Процесс осаждения белков нейтральными солевыми растворами называется высаливанием. Характерной особенностью белков, полученных высаливанием, является сохранение ими нативных биологических свойств после удаления соли.

Механизм высаливания состоит в том, что добавляемые анионы и катионы солевого раствора снимают гидратную оболочку белков, являющуюся одним из факторов его устойчивости. Возможно, одновременно происходит и нейтрализация зарядов белка ионами соли, что также способствует осаждению белков.

Способность к высаливанию наиболее выражена у анионов солей. По силе высаливающего действия анионы и катионы располагаются в следующие ряды:

  • SO 4 2- > С 6 Н 5 О 7 3- > СН 3 СОО - > Сl - > NO 3 - > Вr - > I - > CNS -
  • Li + >Na + > К + > Pb + > Сs +

Эти ряды называются лиотропными.

Сильным высаливающим эффектом в этом ряду обладают сульфаты. На практике для высаливания белков чаще всего применяют сульфат натрия и аммония. Кроме солей белки осаждают органическими водоотнимающими средствами (этанол, ацетон, метанол и др.). Фактически это то же высаливание.

Высаливание широко используют для разделения и очистки белков, поскольку многие белки различаются по размеру гидратной оболочки и величине зарядов. Для каждого из них имеется своя зона высаливания, т. е. концентрация соли, позволяющая дегидратировать и осадить белок. После удаления высаливающего агента белок сохраняет все свои природные свойства и функции.

Денатурация (денативация) и ренатурация (ренативация)

При действии различных веществ, нарушающих высшие уровни организации белковой молекулы (вторичную, третичную, четвертичную) с сохранением первичной структуры, белок теряет свои нативные физико-химические и, главное, биологические свойства. Это явление называется денатурацией (денативацией). Оно характерно только для молекул, имеющих сложную пространственную организацию. Синтетические и природные пептиды не способны к денатурации.

При денатурации разрываются связи, стабилизирующие четвертичную, третичную и даже вторичную структуры. Полипептидная цепь разворачивается и находится в растворе или в развернутом виде, или в виде беспорядочного клубка. При этом теряется гидратная оболочка и белок выпадает в осадок. Однако осажденный денатурированный белок отличается от того же белка, осажденного путем высаливания, так как в первом случае он утрачивает нативные свойства, а во втором сохраняет. Это указывает на то, что механизм действия веществ, вызывающих денатурацию и высаливание, разный. При высаливании сохраняется нативная структура белка, а при денатурации разрушается.

Денатурирующие факторы делятся на

  • физические [показать] .

    К физическим факторам относятся: температура, давление, механическое воздействие, ультразвуковое и ионизирующее излучение.

    Тепловая денатурация белков является наиболее изученным процессом. Она считалась одним из характерных признаков белков. Давно известно, что при нагревании белок свертывается (коагулирует) и выпадает в осадок. Большинство белков термолабильны, однако известны белки, очень устойчивые к нагреванию. Например, трипсин, химотрипсин, лизоцим, некоторые белки биологических мембран. Особой устойчивостью к температуре отличаются белки бактерий, обитающих в горячих источниках. Очевидно, у термостабильных белков тепловое движение полипептидных цепей, вызванное нагреванием, недостаточно для разрыва внутренних связей молекул белка. В изоэлектрической точке белки легче подвергаются тепловой денатурации. Этот прием используется в практической работе. Некоторые белки, наоборот, денатурируют при низкой температуре.

  • химические [показать] .

    К химическим факторам, вызывающим денатурацию, относятся: кислоты и щелочи, органические растворители (спирт, ацетон), детергенты (моющие средства), некоторые амиды (мочевина, соли гуанидина и т. д.), алкалоиды, тяжелые металлы (соли ртути, меди, бария, цинка, кадмия и т. д.). Механизм денатурирующего действия химических веществ зависит от их физико-химических свойств.

    Кислоты и щелочи широко используются в качестве осадителей белков. Многие белки денатурируются при крайних значениях рН - ниже 2 или выше 10-11. Но некоторые белки устойчивы к действию кислот и щелочей. Например, гистоны и протамины не денатурируются даже при рН 2 или рН 10. Крепкие растворы этанола, ацетон тоже оказывают денатурирующее влияние на белки, хотя для некоторых белков эти органические растворители используются как высаливающие агенты.

    Тяжелые металлы, алкалоиды издавна применяются как осадители; они образуют прочные связи с полярными группами белков и тем самым разрывают систему водородных и ионных связей.

    Особо следует остановиться на мочевине и солях гуанидина, которые в больших коцентрациях (для мочевины 8 моль/л, для гуанидина гидрохлорида 2 моль/л) конкурируют пептидными группами за образование водородных связей. В результате происходит диссоциация на субъединицы у белков с четвертичной структурой, а затем и разворачивание полипептидных цепей. Это свойство мочевины настолько ярко, что его широко используют для доказательства наличия четвертичной структуры белка и значения его структурной организации в осуществлении физиологической функции.

Свойства денатурированных белков . Наиболее типичными для денатурированных белков являются следующие признаки.

  • Увеличение числа реактивных или функциональных групп по сравнению с нативной молекулой белка (функциональными группами называются группы боковых радикалов аминокислот: СООН, NН 2 , SН, ОН). Часть этих групп обычно находится внутри молекулы белка и не выявляется специальными реагентами. Развертывание полипептидной цепи при денатурации позволяет обнаружить эти дополнительные, или скрытые, группы.
  • Уменьшение растворимости и осаждение белка (связано с потерей гидратной оболочки, развертыванием молекулы белка с "обнажением" гидрофобных радикалов и нейтрализацией зарядов полярных групп).
  • Изменение конфигурации молекулы белка.
  • Потеря биологической активности, вызванная нарушением нативной структурной организации молекулы.
  • Более легкое расщепление протеолитическими ферментами по сравнению с нативным белком переход компактной нативной структуры в развернутую рыхлую форму облегчает доступ ферментов к пептидным связям белка, которые они разрушают.

Последнее качество денатурированного белка широко известно. Термическая или иная обработка продуктов, содержащих белки (главным образом мясные), способствует лучшему перевариванию их с помощью протеолитических ферментов желудочно-кишечного тракта. В желудке человека и животных вырабатывается природный денатурирующий агент - соляная кислота, которая, денатурируя белки, помогает их расщеплению ферментами. Однако наличие соляной кислоты и протеолитических ферментов не позволяет применять белковые лекарственные препараты через рот, ибо они денатурируются и тут же расщепляются, теряя биологическую активность.

Заметим также, что денатурирующие вещества, осаждающие белки, используются в биохимической практике с иными целями, чем высаливающие. Высаливание как прием применяется для выделения какого-то белка или группы белков, а денатурация для освобождения от белка смеси каких-либо веществ. Удаляя белок, можно получить безбелковый раствор или устранить действие этого белка.

Долго считалось, что денатурация необратима. Однако в некоторых случаях удаление денатурирующего агента (такие опыты были сделаны при использовании мочевины) восстанавливает биологическую активность белка. Процесс восстановления физико-химических и биологических свойств денатурированного белка называется ренатурацией или ренативацией. Если денатурированный белок (после удаления денатурирующих веществ) вновь самоорганизуется в исходную структуру, то восстанавливается и его биологическая активность.

Страница 4 всего страниц: 7

Белки – это биополимеры, состоящие из остатков α-аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот.

Структура белка

Белки обладают неисчерпаемым разнообразием структур.

Первичная структура белка – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это пространственная конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH.

Третичная структура – это пространственная конфигурация, которую принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка.

Физические свойства

Свойства белков весьма разнообразны, которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит измене- ние вторичной, третичной и четвертичной структур белковой макромолекулы, то есть ее нативной пространственной структуры. Первичная структура, а следователь- но, и химический состав белка не меняются. Изменяются физические свойства: сни- жается растворимость, способность к гидратации, теряется биологическая актив-ность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатура- ция белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пи- щевого сырья,полуфабрикатов, а иногда и готовых продуктов. Особую роль про- цессы тепловой денатурации играют при бланшировании растительного сырья, суш- ке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO 3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO 4 → фиолетовая окраска

Гидролиз

Белок + Н 2 О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание бел- ка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности бел- ковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), амин- ные (NH 2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидрат- ная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектричес- кой точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяют- ся, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность ме- няется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не текучи, упруги, обладают плас-тичностью, определенной механической прочностью, способны сохранять свою фор- му. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (нап- ример, белки молока), образуя растворы с невысокой концентрацией. Гидрофильные свойства белков имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма– полужидкое содержимое клетки. Сильно гидратированный студень–сырая клейковина, выделенная из пшеничного теста, она содержит до 65% воды. Гидрофильность, главное качество зерна пшеницы, белков зерна и муки играет боль- шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое полу- чают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Пенообразование

Процесс пенообразования–это способность белков образовывать высококонцент- рированные системы «жидкость–газ»,называемые пенами. Устойчивость пены, в ко- торой белок является пенообразователем, зависит не только от его природы и от кон- цнтрации,но и от температуры. Белки в качестве пенообразователей широко исполь- зуются в кондитерской промышленности(пастила, зефир, суфле).Структуру пены имеет хлеб, а это влияет на его вкусовые свойства.

Горение

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Цветные реакции.

  • Ксантопротеиновая–происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождаю- щеееся появлением желтой окраски;
  • Биуретовая – происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди(II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается появлением фиолетово–синей окраски;
  • при нагревании белков со щелочью в присутствии солей свинца выпадает черный осадок, который содержит серу.


Как известно, белки - основа зарождения жизни на нашей планете. По именно коацерватная капля, состоящая из молекул пептидов, стала основой зарождения живого. Это и не вызывает сомнений, ведь анализ внутреннего состава любого представителя биомассы показывает, что эти вещества есть во всем: растениях, животных, микроорганизмах, грибах, вирусах. Причем они очень разнообразны и макромолекулярны по природе.

Названий у этих структур четыре, все они являются синонимами:

  • белки;
  • протеины;
  • полипептиды;
  • пептиды.

Белковые молекулы

Их количество поистине неисчислимо. При этом все белковые молекулы можно разделить на две большие группы:

  • простые - состоят только из аминокислотных последовательностей, соединенных пептидными связями;
  • сложные - строение и структура белка характеризуются дополнительными протолитическими (простетическими) группами, называемыми еще кофакторами.

При этом сложные молекулы также имеют свою классификацию.

Градация сложных пептидов

  1. Гликопротеиды - тесно связанные соединения белка и углевода. В структуру молекулы вплетаются простетические группы мукополисахаридов.
  2. Липопротеиды - комплексное соединение из белка и липида.
  3. Металлопротеиды - в качестве простетической группы выступают ионы металлов (железо, марганец, медь и другие).
  4. Нуклеопротеиды - связь белка и нуклеиновых кислот (ДНК, РНК).
  5. Фосфопротеиды - конформация протеина и остатка ортофосфорной кислоты.
  6. Хромопротеиды - очень схожи с металлопротеидами, однако элемент, входящий в состав простетической группы, представляет собой целый окрашенный комплекс (красный - гемоглобин, зеленый - хлорофилл и так далее).

У каждой рассмотренной группы строение и свойства белков различны. Функции, которые они выполняют, также варьируются в зависимости от типа молекулы.

Химическое строение белков

С данной точки зрения протеины - это длинная, массивная цепь аминокислотных остатков, соединяющихся между собой специфическими связями, называемыми пептидными. От боковых структур кислот отходят ответвления - радикалы. Такое строение молекулы было открыто Э. Фишером в начале XXI века.

Позже более подробно были изучены белки, строение и функции белков. Стало ясно, что аминокислот, образующих структуру пептида, всего 20, но они способны комбинироваться самым разным способом. Отсюда и разнообразие полипептидных структур. Кроме того, в процессе жизнедеятельности и выполнения своих функций белки способны претерпевать ряд химических превращений. В результате они меняют структуру, и появляется уже совсем новый тип соединения.

Чтобы разорвать пептидную связь, то есть нарушить белок, строение цепей, нужно подобрать очень жесткие условия (действие высоких температур, кислот или щелочей, катализатора). Это объясняется высокой прочностью в молекуле, а именно в пептидной группе.

Обнаружение белковой структуры в условиях лаборатории проводится при помощи биуретовой реакции - воздействия на полипептид свежеосажденным (II). Комплекс пептидной группы и иона меди дает ярко-фиолетовую окраску.

Существует четыре основные структурные организации, каждая из которых имеет свои особенности строения белков.

Уровни организации: первичная структура

Как уже упоминалось выше, пептид - это последовательность аминокислотных остатков с включениями, коферментами или же без них. Так вот первичной называют такую структуру молекулы, которая является природной, естественной, представляет собой истинно аминокислоты, соединенные пептидными связями, и больше ничего. То есть полипептид линейного строения. При этом особенности строения белков такого плана - в том, что такое сочетание кислот является определяющим для выполнения функций белковой молекулы. Благодаря наличию данных особенностей возможно не только идентифицировать пептид, но и предсказать свойства и роль совершенно нового, еще не открытого. Примеры пептидов, обладающих природным первичным строением, - инсулин, пепсин, химотрипсин и другие.

Вторичная конформация

Строение и свойства белков этой категории несколько меняются. Такая структура может сформироваться изначально от природы либо при воздействии на первичную жестким гидролизом, температурой или иными условиями.

Данная конформация имеет три разновидности:

  1. Ровные, правильные, стереорегулярные витки, построенные из остатков аминокислот, которые закручиваются вокруг основной оси соединения. Удерживаются вместе только возникающими между кислородом одной пептидной группировки и водородом другой. Причем строение считается правильным из-за того, что витки равномерно повторяются через каждые 4 звена. Такая структура может быть как левозакрученной, так и правозакрученной. Но в большинстве известных белков преобладает правовращающий изомер. Такие конформации принято называть альфа-структурами.
  2. Состав и строение белков следующего типа отличается от предыдущего тем, что водородные связи образуются не между рядом стоящими по одной стороне молекулы остатками, а между значительно удаленными, причем на достаточно большое расстояние. По этой причине вся структура принимает вид нескольких волнообразных, извитых змейкой полипептидных цепочек. Есть одна особенность, которую должен проявлять белок. Строение аминокислот на ответвлениях должно быть максимально коротким, как у глицина или аланина, например. Этот тип вторичной конформации носит название бета-листов за способность будто слипаться при образовании общей структуры.
  3. Относящееся к третьему типу строение белка биология обозначает как сложные, разноразбросанные, неупорядоченные фрагменты, не обладающие стереорегулярностью и способные изменять структуру под воздействием внешних условий.

Примеров белков, имеющих вторичную структуру от природы, не выявлено.

Третичное образование

Это достаточно сложная конформация, имеющая название "глобула". Что собой представляет такой белок? Строение его основывается на вторичной структуре, однако добавляются новые типы взаимодействий между атомами группировок, и вся молекула словно сворачивается, ориентируясь, таким образом, на то, чтобы гидрофильные группировки были направлены внутрь глобулы, а гидрофобные - наружу.

Этим объясняется заряд белковой молекулы в коллоидных растворах воды. Какие же типы взаимодействий здесь присутствуют?

  1. Водородные связи - остаются без изменений между теми же самыми частями, что и во вторичной структуре.
  2. взаимодействия - возникают при растворении полипептида в воде.
  3. Ионные притяжения - образуются между разнозаряженными группами аминокислотных остатков (радикалов).
  4. Ковалентные взаимодействия - способны формироваться между конкретными кислотными участками - молекулами цистеина, вернее, их хвостами.

Таким образом, состав и строение белков, обладающих третичной структурой, можно описать как свернутые в глобулы полипептидные цепи, удерживающие и стабилизирующие свою конформацию за счет разных типов химических взаимодействий. Примеры таких пептидов: фосфоглицераткеназа, тРНК, альфа-кератин, фиброин шелка и другие.

Четвертичная структура

Это одна из самых сложных глобул, которую образуют белки. Строение и функции белков подобного плана очень многогранны и специфичны.

Что собой представляет такая конформация? Это несколько (в некоторых случаях десятки) крупных и мелких полипептидных цепей, которые формируются независимо друг от друга. Но затем за счет тех же взаимодействий, что мы рассматривали для третичной структуры, все эти пептиды скручиваются и переплетаются между собой. Таким образом получаются сложные конформационные глобулы, которые могут содержать и атомы металлов, и липидные группировки, и углеводные. Примеры таких белков: ДНК-полимераза, белковая оболочка табачного вируса, гемоглобин и другие.

Все рассмотренные нами структуры пептидов имеют свои методы идентификации в лабораторных условиях, основанные на современных возможностях использования хроматографии, центрифугирования, электронной и оптической микроскопии и высоких компьютерных технологиях.

Выполняемые функции

Строение и функции белков тесно коррелируют друг с другом. То есть каждый пептид играет определенную роль, уникальную и специфическую. Встречаются и такие, которые способны выполнять в одной живой клетке сразу несколько значительных операций. Однако можно в обобщенном виде выразить основные функции белковых молекул в организмах живых существ:

  1. Обеспечение движения. Одноклеточные организмы, либо органеллы, или некоторые виды клеток способны к передвижениям, сокращениям, перемещениям. Это обеспечивается белками, входящими в состав структуры их двигательного аппарата: ресничек, жгутиков, цитоплазматической мембраны. Если же говорить о неспособных к перемещениям клетках, то белки могут способствовать их сокращению (миозин мышц).
  2. Питательная или резервная функция. Представляет собой накопление белковых молекул в яйцеклетках, зародышах и семенах растений для дальнейшего восполнения недостающих питательных веществ. При расщеплении пептиды дают аминокислоты и биологически активные вещества, которые необходимы для нормального развития живых организмов.
  3. Энергетическая функция. Помимо углеводов, силы организму могут давать и белки. При распаде 1 г пептида высвобождается 17,6 кДж полезной энергии в форме аденозинтрифосфорной кислоты (АТФ), которая расходуется на процессы жизнедеятельности.
  4. Сигнальная и Заключается в осуществлении тщательного контроля за происходящими процессами и передачи сигналов от клеток к тканям, от них к органам, от последних к системам и так далее. Типичным примером может служить инсулин, который строго фиксирует количество глюкозы в крови.
  5. Рецепторная функция. Осуществляется путем изменения конформации пептида с одной стороны мембраны и вовлечения в реструктуризацию другого конца. При этом и происходит передача сигнала и необходимой информации. Чаще всего такие белки встраиваются в цитоплазматические мембраны клеток и осуществляют строгий контроль над всеми веществами, проходящими через нее. Также оповещают о химических и физических изменениях окружающей среды.
  6. Транспортная функция пептидов. Ее осуществляют белки-каналы и белки-переносчики. Роль их очевидна - транспортировка необходимых молекул к местам с низкой концентрацией из частей с высокой. Типичным примером служит перенос кислорода и диоксида углерода по органам и тканям белком гемоглобином. Ими же осуществляется доставка соединений с невысокой молекулярной массой через мембрану клетки внутрь.
  7. Структурная функция. Одна из важнейших из тех, которые выполняет белок. Строение всех клеток, их органелл обеспечивается именно пептидами. Они подобно каркасу задают форму и структуру. Кроме того, они же ее поддерживают и видоизменяют в случае необходимости. Поэтому для роста и развития всем живым организмам необходимы белки в рационе питания. К таким пептидам можно отнести эластин, тубулин, коллаген, актин, кератин и другие.
  8. Каталитическая функция. Ее выполняют ферменты. Многочисленные и разнообразные, они ускоряют все химические и биохимические реакции в организме. Без их участия обычное яблоко в желудке смогло бы перевариться только за два дня, с большой вероятностью загнив при этом. Под действием каталазы, пероксидазы и других ферментов этот процесс происходит за два часа. В целом именно благодаря такой роли белков осуществляется анаболизм и катаболизм, то есть пластический и

Защитная роль

Существует несколько типов угроз, от которых белки призваны оберегать организм.

Во-первых, травмирующих реагентов, газов, молекул, веществ различного спектра действия. Пептиды способны вступать с ними в химическое взаимодействие, переводя в безобидную форму или же просто нейтрализуя.

Во-вторых, физическая угроза со стороны ран - если белок фибриноген вовремя не трансформируется в фибрин на месте травмы, то кровь не свернется, а значит, закупорка не произойдет. Затем, наоборот, понадобится пептид плазмин, способный сгусток рассосать и восстановить проходимость сосуда.

В-третьих, угроза иммунитету. Строение и значение белков, формирующих иммунную защиту, крайне важны. Антитела, иммуноглобулины, интерфероны - все это важные и значимые элементы лимфатической и иммунной системы человека. Любая чужеродная частица, вредоносная молекула, отмершая часть клетки или целая структура подвергается немедленному исследованию со стороны пептидного соединения. Именно поэтому человек может самостоятельно, без помощи лекарственных средств, ежедневно защищать себя от инфекций и несложных вирусов.

Физические свойства

Строение белка клетки весьма специфично и зависит от выполняемой функции. А вот физические свойства всех пептидов схожи и сводятся к следующим характеристикам.

  1. Вес молекулы - до 1000000 Дальтон.
  2. В водном растворе формируют коллоидные системы. Там структура приобретает заряд, способный варьироваться в зависимости от кислотности среды.
  3. При воздействии жестких условий (облучение, кислота или щелочь, температура и так далее) способны переходить на другие уровни конформаций, то есть денатурировать. Данный процесс в 90% случаев необратим. Однако существует и обратный сдвиг - ренатурация.

Это основные свойства физической характеристики пептидов.