Какова функция клеточной структуры изображенной на рисунке. Как называются клеточные структуры, изображенные на картинке? Строение и функции растительной клетки

1 вариант

а) фотосинтез

б) образование лизосом

в) синтез белка

2. Какая из перечисленных клеточных структур участвует в делении клетки:

а) клеточный центр

б) рибосомы

в) эндоплазматическая сеть

г) аппарат Гольджи

3. Какие из перечисленных клеточных структур имеют немембранное строение:

а) рибосомы

б) митохондрии

в) пластиды

г) лизосомы

4. И растительные и животные клетки имеют:

а) пластиды

б) клеточный центр

в) гликокаликс

г) плазматическую мембрану

5. Найдите соответствия между органоидами клетки и их функциями:

ОРГАНОИД ФУНКЦИЯ

  1. Митохондрия а) синтез белка
  2. Пластиды б) внутриклеточное пищеварение
  3. Аппарат Гольджи в) синтез АТФ
  4. Лизосомы г) окраска плодов
  5. Эндоплазматическая сеть д) синтез углеводов и липидов
  6. Рибосомы е) накопление веществ, синтезируемых в клетке

Тест по теме «Строение клетки»

2 вариант

Выберите один правильный ответ из четырех предложенных.

1. Какую функцию выполняет изображенный на рисунке органоид:

а) синтез АТФ

б) образование лизосом

в) синтез белка

г) синтез углеводов и липидов

2. Какая из перечисленных клеточных структур участвует в формировании рибосом

а) клеточный центр

б) ядрышко

в) эндоплазматическая сеть

г) аппарат Гольджи

3. Какие из перечисленных клеточных структур являются двумембранными органоидами растительных клеток:

а) рибосомы

б) эндоплазматическая сеть

в) пластиды

г) лизосомы

4. Какая из перечисленных клеточных структур представлена в виде небольших пузырьков, содержащих ферменты:

а) эндоплазматическая сеть

б) клеточный центр

в) лизосомы

г) плазматическая мембрана

5. Найдите соответствия между структурными компонентами клетки и их функциями:

КОМПОНЕНТ КЛЕТКИ ФУНКЦИЯ

  1. Плазматическая мембрана а) связывает части клетки в единое целое
  2. Ядро б) внутриклеточное пищеварение
  3. Цитоплазма в) хранение наследственной информации
  4. Лизосомы г) транспорт веществ в клетку и из клетки
  5. Эндоплазматическая сеть д) синтез белка
  6. Рибосомы е) синтез углеводов и липидов

6.Как называется структура клетки, изображенная на рисунке? Каковы ее функции? Что обозначено цифрами 1, 2, 3

Правильные ответы:

1 вариант

1 - б, 2 - а, 3 - а, 4 – г

5. 1 – в, 2 - г, 3 – е, 4 – б, 5 – д, 6 – а

6. Это клеточное ядро.

Функции: хранение и передача наследственной информации, регуляция процессов жизнедеятельности клетки. 1 – ядрышко, 2 – ядерная пора, 3 – кариоплазма

2 вариант

1 – а, 2 – б, 3 – в, 4 – в

5. 1 – г, 2 – в, 3 – а, 4 – б, 5 – е, 6 – д

6. Это цитоплазматическая мембрана.

Функции: защитная, барьерная, транспортная, соединение клеток в ткани

1 – гликокаликс, 2 – билипидный слой, 3 - белки


    Первый микроскоп был изобретен Янсеном в (_).

    В 1665 году Роберт Гук (_).

    Антоний Ван Левенгук открыл мир (_).

    Роберт Броун описал в растительных клетках (_).

    В 1838–1839 гг. ботаник Матиас Шлейден и зоолог Теодор Шванн сформулировали (_).

    Т.Шванн считал, что новые клетки образуются (_).

    В 1855 г. Рудольф Вирхов доказал, что (_).

    Основной единицей строения и жизнедеятельности живых организмов является (_).

    Все клетки живых организмов имеют (_).

    Клетки образуются только (_).

Задание 2. «Строение клеточной оболочки»

    Что обозначено на рисунке цифрами 1 - 5?

    Из каких двух частей состоит оболочка животной клетки? Растительной клетки?

    Какова толщина плазмалеммы?

Задание 3. «Строение плазмалеммы»

Рассмотрите рисунок и ответьте на вопросы:

    Оболочка какой клетки на рисунке? Ответ поясните.

    Что обозначено на рисунке цифрами 1-6?

    Какие молекулы образуют гликокаликс?

Задание 4. «Электрохимический градиент»

Рассмотрите рисунок и ответьте на вопросы:

    Что такое концентрационный градиент?

    Что такое электростатический градиент?

    Что такое электрохимический градиент?

Задание 5. «Транспорт веществ через мембрану»

Рассмотрите рисунок и ответьте на вопросы:

    Какие виды транспорта обозначены цифрами 1 - 4?

    Какой вид транспорта требует затраты энергии?

    Как жирорастворимые вещества попадают в клетку?

    Как ионы Na + выводятся из цитоплазмы клетки наружу?

Задание 6. Рассмотрите рисунок «Плазмолиз»

Рассмотрите рисунок и ответьте на вопросы:

    Что называется плазмолизом?

    Каким образом осуществляется движение воды через клеточную мембрану?

    Причины плазмолиза?

Задание 7. «Оболочка клетки»

Запишите номера предложений и пропущенные слова:

    Оболочка растительной клетки представлена (_).

    Плазматическая мембрана образована (_).

    Образуют гидрофобную основу клеточной мембраны (_).

    Основная часть воды попадает в клетку через клеточную оболочку (_).

    Захват плазматической мембраной твердых частиц – (_).

    Захват плазматической мембраной капель жидкости и втягивание их внутрь клетки – (_).

    Поступление веществ в клетку – (_), выведение веществ из клетки – (_).

    Транспорт веществ через оболочку клетки, который идет с затратой энергии АТФ – (_).

    Поступление воды в клетку в процессе деплазмолиза происходит за счет (_).

    Плазмолизом называется (_).

    Осмосом называется (_).

Задание 8. «Комплекс Гольджи и лизосомы»

Рассмотрите рисунок и ответьте на вопросы:

    Что обозначено на рисунке буквами А-В?

    Где образуются лизосомы?

    Сколько мембран окружает содержимое лизосом?

    Каковы размеры лизосом?

    Каковы основные функции лизосом?

Задание 9. «Одномембранные органоиды»

Рассмотрите рисунок и ответьте на вопросы:

    Каковы основные функции комплекса Гольджи?

    Какие два вида ЭПС известны?

    Каковы основные функции ЭПС?

    Каковы функции ресничек и жгутиков?

    Чем реснички отличаются от жгутиков?

Задание 10. «Митохондрии»

Рассмотрите рисунок и ответьте на вопросы:

    Что обозначено цифрами 1 - 5?

    Каковы основные функции митохондрий?

    Как образуются новые митохондрии?

    Какова масса митохондриальных рибосом?

    Что известно о наследственном аппарате митохондрий?

    Каковы размеры митохондрий?

Задание 11. «Пластиды»

Рассмотрите рисунок и ответьте на вопросы:

    Что обозначено цифрами 1 - 6?

    Каковы основные функции хлоропластов?

    Как образуются новые пластиды?

    Какова масса пластидных рибосом?

    Что известно о наследственном аппарате хлоропластов?

    Каковы размеры хлоропластов?

Задание 12. «Взаимопревращения пластид»

Рассмотрите рисунок и ответьте на вопросы:

    Приведите примеры превращения пропластид в различные виды пластид.

    Приведите примеры превращения лейкопластов в хлоропласты и наоборот.

    Каковы функции лейкопластов?

    Каковы функции хромопластов?

Задание 13. «Немембранные органоиды»

Рассмотрите рисунок и ответьте на вопросы:

    Что обозначено цифрами 1 - 5?

    Каковы основные функции клеточного центра?

    Как образуются центриоли клеточного центра?

    Что характерно для клеточного центра высших растений?

    Каковы функции микротрубочек и микронитей?

    Где образуются субъединицы рибосом?

    Каковы функции рибосом?

    Каковы размеры рибосом?

    Что входит в состав рибосомы?

Задание 14. «Органоиды клетки»

Запишите номера тестов, против каждого – правильные варианты ответа

**Тест 1 . К одномембранным органоидам клетки относятся:

    Рибосомы. 6. Лизосомы.

    Комплекс Гольджи. 7. ЭПС.

**Тест 2 . К двумембранным органоидам клетки относятся:

    Рибосомы. 6. Лизосомы.

    Комплекс Гольджи. 7. ЭПС.

    Митохондрии. 8. Ядро.

    Хлоропласты. 9. Реснички и жгутики эукариот.

    Цитоскелет. 10. Клеточный центр.

**Тест 3 . К немембранным органоидам клетки относятся:

    Рибосомы. 6. Лизосомы.

    Комплекс Гольджи. 7. ЭПС.

    Митохондрии. 8. Миофибриллы из актина и миозина.

    Хлоропласты. 9. Реснички и жгутики эукариот.

    Цитоскелет. 10. Клеточный центр.

Тест 4. За образование лизосом, накопление, модификацию и вывод веществ из клетки отвечает:

    Комплекс Гольджи.

    Клеточный центр.

    Митохондрии.

Тест 5. Биосинтез белков в цитоплазме клетки осуществляют:

    Митохондрии.

    Хлоропласты.

    Комплекс Гольджи.

    Рибосомы.

Тест 6. "Органоиды дыхания", обеспечивающие клетку энергией:

    Митохондрии.

    Хлоропласты.

    Комплекс Гольджи.

    Рибосомы.

Тест 7. Расщепляют сложные органические молекулы до мономеров, даже собственные органоиды и пищевые частицы, попавшие в клетку путем фагоцитоза:

    Лизосомы.

    Рибосомы.

    Комплекс Гольджи.

Тест 8. В клетках высших растений отсутствуют:

    Митохондрии.

    Хлоропласты.

    Комплекс Гольджи.

    Центриоли.

Тест 9. За образование цитоскелета отвечает:

    Комплекс Гольджи.

    Клеточный центр.

    Миофибриллы.

Тест 10. Способны преобразовывать энергию солнечного света в энергию химических связей образованного органического вещества:

    Митохондрии.

    Хлоропласты.

    Лизосомы.

    Комплекс Гольджи.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Тема «Клетка»

Вариант 1

Часть 1

1. Уменьшение числа и размеров митохондрий в клетках дрожжей вызывает

1) прекращение деления клеток 2) нарушение энергетического обмена 3) прекращение синтеза белков 4) образование новых видов дрожжей

2. В состав какого органоида клетки входят растительные пигменты?

1) митохондрия 2) хлоропласт 3) комплекс Гольджи 4) вакуоль

3. Как называют изображённую на рисунке клеточную структуру?

1) ядро 2) вакуоль 3) лизосома 4) митохондрия

4. Как называется полужидкая среда клетки, в которой расположено ядро?

1) вакуоль 2) цитоплазма 3) лизосома 4) клеточный сок

5. Какова функция клеточной структуры, изображённой на рисунке?

1) биосинтез белка 2) синтез крахмала 3) защита от внешних воздействий 4) хранение генетической информации

1) хромопласт 2) ЭПС 3) комплекс Гольджи 4) лизосома

Какое понятие следует вписать на место пропуска в этой таблице?

1) синтез АТФ 2) синтез белка 3) выведение веществ из клетки 4) хранение информации

8. Установите соответствие между процессом и органоидом, в котором этот процесс происходит. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Впишите в таблицу цифры выбранных ответов.

Часть 2

1. Клетка гриба отличается от растительной клетки отсутствием

1) клеточной стенки 2) пластид 3) эндоплазматической сети 4) ядра

2. Клетка гриба отличается от животной клетки наличием

1) клеточной стенки 2) митохондрий 3) пластид 4) ядра

3. Бактерии отличаются от одноклеточных зелёных водорослей отсутствием

1) ядра 2) цитоплазмы 3) жгутиков 4) клеточной оболочки

4. Гетеротрофами не являются

1) грибы 2) животные 3) болезнетворные бактерии 4) одноклеточные водоросли

5. Укажите органоиды, характерные только для растительной клетки. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны .

1) эндоплазматическая сеть 2) хлоропласты 3) клеточная оболочка 4) ядро 5) рибосомы 6) центральная вакуоль

Тема «Клетка»

Вариант 2

Часть 1

1. Какую из перечисленных клеточных структур имеют в своём составе клетки всех организмов?

1) цитоплазматическую мембрану 2) хлоропласт 3) митохондрию 4) ядро

2. Как называют изображённый клеточный органоид?

1) рибосома 2) лизосома 3) хлоропласт 4) митохондрия

3. Какая из перечисленных клеточных структур НЕ является органоидом?

1) включение 2) вакуоль 3) лизосома 4) клеточный центр

4. Как называют органоид клетки, который по выполняемой функции напоминает пищеварительную систему многоклеточного животного?

1) аппарат Гольджи 2) митохондрия 3) лизосома 4) ядро

5. Как называют изображённый на рисунке клеточный органоид?

1) ядро 2) хлоропласт 3) митохондрия 4) комплекс Гольджи

6. В приведённой ниже таблице между позициями первого и второго столбца имеется взаимосвязь. Какое понятие следует вписать на место пропуска в этой таблице?

1) ядро 2) митохондрия 3) рибосома 4) хлоропласт

7. В приведённой ниже таблице между позициями первого и второго столбца имеется взаимосвязь.

Какое понятие следует вписать на место пропуска в этой таблице?

1) ЭПС 2) хлоропласт 3) рибосома 4) ядро

8. Установите соответствие между строением клетки и её видом: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца .

Часть 2

1. Бактериальная клетка отличается от растительной клетки отсутствием

1) клеточного ядра 2) клеточной стенки 3) нуклеиновых кислот 4) оболочки клетки

2. Характерный признак царства Грибов –

1) наличие хитина в клеточной оболочке 2) ограниченный рост 3) отсутствие в клетках ядра 4) автотрофный тип питания

3. Что характерно для автотрофных организмов?

1) живут без пищи 2) способны синтезировать органические вещества из неорганических 3) потребляют готовые органические вещества 4) поедают друг друга

4. В состав клеток растений, в отличие от грибов, входят

1) ядра 2) крупные центральные вакуоли 3) митохондрии 4) рибосомы

5. Укажите органоиды, характерные для животной клетки. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

1) клеточная оболочка 2) ядро 3) центральная вакуоль 4) пластиды 5) клеточная мембрана 6) митохондрия

Теперь перейдем к внутреннему содержимому. Внутренняя мембрана хлоропласта образует целую сеть достаточно упорядоченных мембран. Мембраные пузыречки похожи на монетки. Один самостоятельный пузыречек — это тилакоид (оранжевая стрелочка), стопка тилакоидов — это грана. Длинный вытянутый тилакоид (часто соединяющий несколько гран) называют ламелой (зеленая стрелочка). Хлоропласт (вместе с митохондрией) имеет особенность строения, заключающуюся в наличии собственной ДНК. В этой молекуле ДНК содержатся гены с информацией о белках-ферментах, участвующих в фотосинтезе. И эти ферменты синтезируются на месте, т.е. в самом хлоропласте, а значит есть рибосомы. В результате фотосинтеза образуется глюкоза и из нее может здесь же синтезироваться крахмал (зерна крахмала можно увидеть под сиреневой стрелочкой) и липидные капли (на рисунке под синей стрелочкой). Внутреннее жидкое содержимое хлоропласта называют стромой.

Соответственно, правильный ответ: 1 — грана, 2 — ДНК, 3 — рибосомы (скорее всего, но так как рисунок не совсем четкий, то может и имеется ввиду строма).

9. На каком рисунке изображена митохондрия?

На третьем рисунке, уже знакомый нам (достаточно узнаваемый) хлоропласт. Вспоминаем, что митохондрия имеет две мембраны и безошибочно выбираем правильный — четвертый ответ. На рисунке под цифрой 4 хорошо видно, что мембран две и внутренняя мембрана органоида впячивется внутрь, образуя складки — кристы. Посмотрим на все многообразие изображений митохондрий . Попутно вспомним, что у митохондрий тоже есть собственная ДНК и рибосомы.

Что же изображено на первом и втором рисунке? Под номером 1 рибосома во время трансляции, на ее фоне мы можем видеть две тРНК и цепочку из аминокислот, которая пока прикреплена к одной из тРНК. Под номером 2 аппарат (комплекс) Гольджи. Не самое удачное, на мой взгляд, изображение этого органоида, но мы должны быть готовы ко всему, поэтому идем по ссылке и наслаждаемся многообразием изображений аппарата Гольджи . Вспоминая попутно, что это одномембранный органоид, который по мимо всего прочего образует лизосомы (мембранные пузырьки сверху органоида на рисунке).

Самое главное чем отличаются прокариоты от эукариот — отсутствие (у прокариот) или наличие (у эукариот) оформленного ядра, т.е. ядерной оболочки вокруг наследственной информации. А — бактерия (относится к прокариотам), Б — хламидоманада (эукариоты). У бактерии кольцевая ДНК (синяя стрелочка), расположенная в цитоплазме, у хламидоманады оформленное ядро с ядрышком (оранжевая стрелочка). Так же можно добавить, что у эукариот есть различные органоиды. В частности у хламидоманады хроматофор, вакуоль и светочувствительный глазок. А у прокариот из органоидов есть только рибосомы.

На рисунке изображен эндо цитоз — поступление веществ внутрь клетки (экзоцитоз наоборот). Процесс этот происходит с помощью плазматической мембраны и благодаря ее пластичности и текучести (а так же несомненно благодаря цитоскелету). Эндоцитоз делят на два разных процесса: фагоцитоз — поступление твердых веществ либо клеток (соответственно, фагоцитоз изображен на рис. А) и пиноцитоз — поступление жидкости (рис. Б). Бактерия будет переварена (разрушена) клеткой.

12. Определите тип и фазу деления клетки, изображенной на рисунке. Какие процессы происходят в этой фазе?

Первым делом надо понять митоз это или мейоз. Два важных момента, на которые нужно обратить внимание. Первое: нет признаков кроссинговера, т.е. хроматиды хромосом нарисованы однородными. Второе: здесь видно четко две пары гомологичных хромосом — две большие и две маленькие. это значит, что редукции наследственного материала не произошло. Значит — это митоз. Фаза — метафаза, так как хромосомы выстроились вдоль экватора по одной линии (так называемая метафазная пластинка).

Процессы: хромосомы, состоящие из двух хроматид, выстраиваются вдоль экватора. К центромерам хромосом прикрепляются нити веретена деления.

13. Какие стадии гаметогенеза обозначены на рисунке буквами А, Б и В? Какой набор хромосом имеют клетки на каждой из этих стадий? К развитию каких специализированных клеток ведёт этот процесс?

Если воспринимать на рисунке под буквой А все пространство до первой горизонтальной линии, то несомненно — это стадия размножения. На этой стадии происходит деление клетки путем митоза, набор хромосом <<2n4c>>. Под буквой Б обозначена стадия роста. Клетка увеличивается в размере, накапливает вещества и энергию для финальной стадии. Под буквой В стадия созревания. На этой стадии происходит мейоз и количество хромосом уменьшается. Набор хромосом становится <>.

Результатом гаметогенеза становится образования гамет, т.е. половых клеток (несомненно специализированных клеток).