Калькулятор онлайн.Нахождение (вычисление) НОД и НОК. Нахождение нод трех и большего количества чисел

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например :

Число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

Число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа . Делитель натурального числа a - это такое натуральное число, которое делит данное число a без остатка. Натуральное число, которое имеет более двух делителей, называется составным . Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12. Наибольший из делителей этих чисел - 12.

Общий делитель двух данных чисел a и b - это число, на которое делятся без остатка оба данных числа a и b . Общий делитель нескольких чисел (НОД) — это число, служащее делителем для каждого из них.

Кратко наибольший общий делитель чисел a и b записывают так:

Пример : НОД (12; 36) = 12.

Делители чисел в записи решения обозначают большой буквой «Д».

Пример:

НОД (7; 9) = 1

Числа 7 и 9 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми чи слами .

Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1. Их НОД равен 1.

Наибольший общий делитель (НОД), свойства.

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример : для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Следствие 1: множество общих делителей m и n совпадает с множеством делителей НОД(m , n ).
  • Следствие 2: множество общих кратных m и n совпадает с множеством кратных НОК (m , n ).

Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.

  • Наибольший общий делитель чисел m и n может быть определён как наименьший положительный элемент множества всех их линейных комбинаций:

и поэтому представим в виде линейной комбинации чисел m и n :

Это соотношение называется соотношением Безу , а коэффициенты u и v коэффициентами Безу . Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы , порождённая набором , — циклическая и порождается одним элементом: НОД (a 1 , a 2 , … , a n ).

Вычисление наибольшего общего делителя (НОД).

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм . Кроме того, значение НОД (m ,n ) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

где — различные простые числа, а и — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД (m ,n ) и НОК (m ,n ) выражаются формулами:

Если чисел более двух: , их НОД находится по следующему алгоритму:

— это и есть искомый НОД.

Также, для того, чтобы найти наибольший общий делитель , можно разложить каждое из заданных чисел на простые множители . Потом выписать отдельно только те множители, которые входят во все заданные числа. Потом перемножаем между собой выписанные числа - результат перемножения и есть наибольший общий делитель.

Разберем пошагово вычисление наибольшего общего делителя:

1. Разложить делители чисел на простые множители:

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа - делитель. Далее в левом столбце записываем значения частных. Поясним сразу на примере. Разложим на простые множители числа 28 и 64.

2. Подчёркиваем одинаковые простые множители в обоих числах:

28 = 2 . 2 . 7

64 = 2 . 2 . 2 . 2 . 2 . 2

3. Находим произведение одинаковых простых множителей и записываем ответ:

НОД (28; 64) = 2 . 2 = 4

Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Первый способ записи НОД:

Найти НОД 48 и 36.

НОД (48; 36) = 2 . 2 . 3 = 12

Второй способ записи НОД:

Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15.

Д (10) = {1, 2, 5, 10}

Д (15) = {1, 3, 5, 15}

Д (10, 15) = {1, 5}

Сейчас и в дальнейшем мы будем подразумевать, что хотя бы одно из данных чисел отлично от нуля. Если все данные числа равны нулю, то их общим делителем является любое целое число, а так как целых чисел бесконечно много, то мы не можем говорить о наибольшем из них. Следовательно, нельзя говорить о наибольшем общем делителе чисел, каждое из которых равно нулю.

Теперь мы можем дать определение наибольшего общего делителя двух чисел.

Определение.

Наибольший общий делитель двух целых чисел – это наибольшее целое число, делящее два данных целых числа.

Для краткой записи наибольшего общего делителя часто используют аббревиатуру НОД – Наибольший Общий Делитель. Также наибольший общий делитель двух чисел a и b часто обозначают как НОД(a, b) .

Приведем пример наибольшего общего делителя (НОД) двух целых чисел. Наибольший общий делитель чисел 6 и −15 равен 3 . Обоснуем это. Запишем все делители числа шесть: ±6 , ±3 , ±1 , а делителями числа −15 являются числа ±15 , ±5 , ±3 и ±1 . Теперь можно найти все общие делители чисел 6 и −15 , это числа −3 , −1 , 1 и 3 . Так как −3<−1<1<3 , то 3 – это наибольший общий делитель чисел 6 и −15 . То есть, НОД(6, −15)=3 .

Определение наибольшего общего делителя трех и большего количества целых чисел аналогично определению НОД двух чисел.

Определение.

Наибольший общий делитель трех и большего количества целых чисел – это наибольшее целое число, делящее одновременно все данные числа.

Наибольший общий делитель n целых чисел a 1 , a 2 , …, a n мы будем обозначать как НОД(a 1 , a 2 , …, a n) . Если найдено значение b наибольшего общего делителя этих чисел, то можно записать НОД(a 1 , a 2 , …, a n)=b .

В качестве примера приведем НОД четырех целых чисел −8 , 52 , 16 и −12 , он равен 4 , то есть, НОД(−8, 52, 16, −12)=4 . Это можно проверить, записав все делители данных чисел, выбрав из них общие и определив наибольший общий делитель.

Отметим, что наибольший общий делитель целых чисел может быть равен одному из этих чисел. Это утверждение справедливо в том случае, если все данные числа делятся на одно из них (доказательство приведено в следующем пункте этой статьи). Например, НОД(15, 60, −45)=15 . Это действительно так, так как 15 делит и число 15 , и число 60 , и число −45 , и не существует общего делителя чисел 15 , 60 и −45 , который превосходит 15 .

Особый интерес представляют так называемые взаимно простые числа , - такие целые числа, наибольший общий делитель которых равен единице.

Свойства наибольшего общего делителя, алгоритм Евклида

Наибольший общий делитель обладает рядом характерных результатов, иными словами, рядом свойств. Сейчас мы перечислим основные свойства наибольшего общего делителя (НОД) , формулировать их мы будем в виде теорем и сразу приводить доказательства.

Все свойства наибольшего общего делителя мы будем формулировать для положительных целых чисел, при этом будем рассматривать лишь положительные делители этих чисел.

    Наибольший общий делитель чисел a и b равен наибольшему общему делителю чисел b и a , то есть, НОД(a, b)=НОД(a, b) .

    Это свойство НОД напрямую следует из определения наибольшего общего делителя.

    Если a делится на b , то множество общих делителей чисел a и b совпадает со множеством делителей числа b , в частности, НОД(a, b)=b .

    Доказательство.

    Любой общий делитель чисел a и b является делителем каждого из этих чисел, в том числе и числа b . С другой стороны, так как a кратно b , то любой делитель числа b является делителем и числа a в силу того, что делимость обладает свойством транзитивности, следовательно, любой делитель числа b является общим делителем чисел a и b . Этим доказано, что если a делится на b , то совокупность делителей чисел a и b совпадает с совокупностью делителей одного числа b . А так как наибольшим делителем числа b является само число b , то наибольший общий делитель чисел a и b также равен b , то есть, НОД(a, b)=b .

    В частности, если числа a и b равны, то НОД(a, b)=НОД(a, a)=НОД(b, b)=a=b . К примеру, НОД(132, 132)=132 .

    Доказанное свойство наибольшего делителя позволяет нам находить НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число. Например, НОД(8, 24)=8 , так как 24 кратно восьми.

    Если a=b·q+c , где a , b , c и q – целые числа, то множество общих делителей чисел a и b совпадает со множеством общих делителей чисел b и c , в частности, НОД(a, b)=НОД(b, c) .

    Обоснуем это свойство НОД.

    Так как имеет место равенство a=b·q+c , то всякий общий делитель чисел a и b делит также и c (это следует из свойств делимости). По этой же причине, всякий общий делитель чисел b и c делит a . Поэтому совокупность общих делителей чисел a и b совпадает с совокупностью общих делителей чисел b и c . В частности, должны совпадать и наибольшие из этих общих делителей, то есть, должно быть справедливо следующее равенство НОД(a, b)=НОД(b, c) .

    Сейчас мы сформулируем и докажем теорему, которая представляет собой алгоритм Евклида . Алгоритм Евклида позволяет находить НОД двух чисел (смотрите нахождение НОД по алгоритму Евклида). Более того алгоритм Евклида позволит нам доказать приведенные ниже свойства наибольшего общего делителя.

    Прежде чем дать формулировку теоремы, рекомендуем освежить в памяти теорему из раздела теории , которая утверждает, что делимое a может быть представлено в виде b·q+r , где b – делитель, q – некоторое целое число, называемое неполным частным, а r – целое число, удовлетворяющее условию , называемое остатком.

    Итак, пусть для двух ненулевых целых положительных чисел a и b справедлив ряд равенств

    заканчивающийся, когда r k+1 =0 (что неизбежно, так как b>r 1 >r 2 >r 3 , … - ряд убывающих целых чисел, и этот ряд не может содержать более чем конечное число положительных чисел), тогда r k – это наибольший общий делитель чисел a и b , то есть, r k =НОД(a, b) .

    Доказательство.

    Докажем сначала, что r k является общим делителем чисел a и b , после чего покажем, что r k не просто делитель, а наибольший общий делитель чисел a и b .

    Будем двигаться по записанным равенствам снизу вверх. Из последнего равенства можно сказать, что r k−1 делится на r k . Учитывая этот факт, а также предыдущее свойство НОД, предпоследнее равенство r k−2 =r k−1 ·q k +r k позволяет утверждать, что r k−2 делится на r k , так как и r k−1 делится на r k и r k делится на r k . По аналогии из третьего снизу равенства заключаем, что r k−3 делится на r k . И так далее. Из второго равенства получаем, что b делится на r k , а из первого равенства получаем, что a делится на r k . Следовательно, r k является общим делителем чисел a и b .

    Осталось доказать, что r k =НОД(a, b) . Для достаточно показать, что любой общий делитель чисел a и b (обозначим его r 0 ) делит r k .

    Будем двигаться по исходным равенствам сверху вниз. В силу предыдущего свойства из первого равенства следует, что r 1 делится на r 0 . Тогда из второго равенства получаем, что r 2 делится на r 0 . И так далее. Из последнего равенства получаем, что r k делится на r 0 . Таким образом, r k =НОД(a, b) .

    Из рассмотренного свойства наибольшего общего делителя следует, что множество общих делителей чисел a и b совпадает с множеством делителей наибольшего общего делителя этих чисел. Это следствие из алгоритма Евклида позволяет найти все общие делители двух чисел как делители НОД этих чисел.

    Пусть a и b – целые числа, одновременно не равные нулю, тогда существуют такие целые числа u 0 и v 0 , то справедливо равенство НОД(a, b)=a·u 0 +b·v 0 . Последнее равенство представляет собой линейное представление наибольшего общего делителя чисел a и b , это равенство называют соотношением Безу, а числа u 0 и v 0 – коэффициентами Безу.

    Доказательство.

    По алгоритму Евклида мы можем записать следующие равенства

    Из первого равенства имеем r 1 =a−b·q 1 , и, обозначив 1=s 1 и −q 1 =t 1 , это равенство примет вид r 1 =s 1 ·a+t 1 ·b , причем числа s 1 и t 1 - целые. Тогда из второго равенства получим r 2 =b−r 1 ·q 2 = b−(s 1 ·a+t 1 ·b)·q 2 =−s 1 ·q 2 ·a+(1−t 1 ·q 2)·b . Обозначив −s 1 ·q 2 =s 2 и 1−t 1 ·q 2 =t 2 , последнее равенство можно записать в виде r 2 =s 2 ·a+t 2 ·b , причем s 2 и t 2 – целые числа (так как сумма, разность и произведение целых чисел является целым числом). Аналогично из третьего равенства получим r 3 =s 3 ·a+t 3 ·b , из четвертого r 4 =s 4 ·a+t 4 ·b , и так далее. Наконец, r k =s k ·a+t k ·b , где s k и t k - целые. Так как r k =НОД(a, b) , и, обозначив s k =u 0 и t k =v 0 , получим линейное представление НОД требуемого вида: НОД(a, b)=a·u 0 +b·v 0 .

    Если m – любое натуральное число, то НОД(m·a, m·b)=m·НОД(a, b) .

    Обоснование этого свойства наибольшего общего делителя таково. Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД(m·a, m·b)=m·r k , а r k – это НОД(a, b) . Следовательно, НОД(m·a, m·b)=m·НОД(a, b) .

    На этом свойстве наибольшего общего делителя основан способ нахождения НОД с помощью разложения на простые множители .

    Пусть p – любой общий делитель чисел a и b , тогда НОД(a:p, b:p)=НОД(a, b):p , в частности, если p=НОД(a, b) имеем НОД(a:НОД(a, b), b:НОД(a, b))=1 , то есть, числа a:НОД(a, b) и b:НОД(a, b) - взаимно простые.

    Так как a=p·(a:p) и b=p·(b:p) , и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД(a, b)=НОД(p·(a:p), p·(b:p))= p·НОД(a:p, b:p) , откуда и следует доказываемое равенство.

    Только что доказанное свойство наибольшего общего делителя лежит в основе .

    Сейчас озвучим свойство НОД, которое сводит задачу нахождения наибольшего общего делителя трех и большего количества чисел к последовательному отысканию НОД двух чисел.

    Наибольший общий делитель чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

    Доказательство базируется на следствии из алгоритма Евклида. Общие делители чисел a 1 и a 2 совпадают с делителями d 2 . Тогда общие делители чисел a 1 , a 2 и a 3 совпадают с общими делителями чисел d 2 и a 3 , следовательно, совпадают с делителями d 3 . Общие делители чисел a 1 , a 2 , a 3 и a 4 совпадают с общими делителями d 3 и a 4 , следовательно, совпадают с делителями d 4 . И так далее. Наконец, общие делители чисел a 1 , a 2 , …, a k совпадают с делителями d k . А так как наибольшим делителем числа d k является само число d k , то НОД(a 1 , a 2 , …, a k)=d k .

На этом закончим обзор основных свойств наибольшего общего делителя.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Эта статья про нахождение наибольшего общего делителя (НОД) двух и большего количества чисел. Сначала рассмотрим алгоритм Евклида, он позволяет находить НОД двух чисел. После этого остановимся на методе, позволяющем вычислять НОД чисел как произведение их общих простых множителей. Дальше разберемся с нахождением наибольшего общего делителя трех и большего количества чисел, а также приведем примеры вычисления НОД отрицательных чисел.

Навигация по странице.

Алгоритм Евклида для нахождения НОД

Заметим, что если бы мы с самого начала обратились к таблице простых чисел , то выяснили бы, что числа 661 и 113 – простые, откуда можно было бы сразу сказать, что их наибольший общий делитель равен 1 .

Ответ:

НОД(661, 113)=1 .

Нахождение НОД с помощью разложения чисел на простые множители

Рассмотрим еще один способ нахождения НОД. Наибольший общий делитель может быть найден по разложениям чисел на простые множители . Сформулируем правило: НОД двух целых положительных чисел a и b равен произведению всех общих простых множителей, находящихся в разложениях чисел a и b на простые множители .

Приведем пример для пояснения правила нахождения НОД. Пусть нам известны разложения чисел 220 и 600 на простые множители, они имеют вид 220=2·2·5·11 и 600=2·2·2·3·5·5 . Общими простыми множителями, участвующими в разложении чисел 220 и 600 , являются 2 , 2 и 5 . Следовательно, НОД(220, 600)=2·2·5=20 .

Таким образом, если разложить числа a и b на простые множители и найти произведение всех их общих множителей, то этим будет найден наибольший общий делитель чисел a и b .

Рассмотрим пример нахождения НОД по озвученному правилу.

Пример.

Найдите наибольший общий делитель чисел 72 и 96 .

Решение.

Разложим на простые множители числа 72 и 96 :

То есть, 72=2·2·2·3·3 и 96=2·2·2·2·2·3 . Общими простыми множителями являются 2 , 2 , 2 и 3 . Таким образом, НОД(72, 96)=2·2·2·3=24 .

Ответ:

НОД(72, 96)=24 .

В заключение этого пункта заметим, что справедливость приведенного правила нахождения НОД следует из свойства наибольшего общего делителя, которое утверждает, что НОД(m·a 1 , m·b 1)=m·НОД(a 1 , b 1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ; 60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида: 570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , то d 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть, НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 , 294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 5806

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена , так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД .
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК .

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2
Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.
Пример: определить, делится ли на 2 число 34938 .
Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3
Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.
Пример: определить, делится ли число 34938 на 3.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5
Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.
Пример: определить, делится ли число 34938 на 5.
Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9
Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.
Пример: определить, делится ли число 34938 на 9.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36) :

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7 , 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252 .

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c) .

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3 , 32 = 1·2·2·2·2·2 , 36 = 1·2·2·3·3 .
  2. Найдём обшие множители: 1, 2 и 2 .
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96 .
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , НОД = 1·2·2·3 = 12 .
  6. НОК(12, 32, 36) = 96·36 / 12 = 288 .

Множество делителей

Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеет множество решений. Найдем их все. Прежде всего разложим данное число на простые множители:

140 = 2 ∙ 2 ∙ 5 ∙ 7.

Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:

Затем выпишем те, которые получаются попарным умножением простых делителей:

2∙2 = 4, 2∙5 = 10, 2∙7 = 14, 5∙7 = 35.

Затем - те, которые содержат в себе три простых делителя:

2∙2∙5 = 20, 2∙2∙7 = 28, 2∙5∙7 = 70.

Наконец, не забудем единицу и само разлагаемое число:

Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:

Множество делителей числа 140 =

{1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Для удобства восприятия мы выписали здесь делители (элементы множества ) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,

Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения

105 = 3 ∙ 5 ∙ 7

мы получаем:

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.

От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:

ПД(140) = {2, 5, 7}.

ПД(105) = {3, 5, 7}.

Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) - только один. Множество ПД(140) - это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.

Сокращение дробей. Наибольший общий делитель

Рассмотрим дробь

Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};

Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Общие элементы множеств Д(105) и Д(140) =

Последнее равенство можно записать короче, а именно:

Д(105) ∩ Д(140) = {1, 5, 7, 35}.

Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».

[Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение , которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:

ПД(105) = {3, 5, 7};

ПД(140) = {2, 5, 7};

ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]

Итак, мы выяснили, что дробь

можно сократить на любое из чисел, принадлежащих множеству

Д(105) ∩ Д(140) = {1, 5, 7, 35}

и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):

Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД ) чисел 105 и 140. Это записывается как

НОД(105, 140) = 35.

Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Перемножая подчеркнутые числа (в любом из разложений), получаем:

НОД(105, 140) = 5 7 = 35.

Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:

168 = 2 2 ∙ 2 ∙ 3 ∙ 7;

396 = 2 2 3 ∙ 3 ∙ 11.

Отсюда видно, что

НОД(168, 396) = 2 2 3 = 12.

Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:

42 = 2 ∙ 3 ∙ 7;

В этом случае,

НОД(42, 55) = 1.

Два натуральных числа, для которых НОД равен единице, называются взаимно простыми . Если из таких чисел составить дробь, например,

то такая дробь является несократимой .

Вообще говоря, правило сокращения дробей можно записать в таком виде:

a / НОД(a , b )

b / НОД(a , b )

Здесь предполагается, что a и b - натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.

Сложение и вычитание дробей. Наименьшее общее кратное

Пусть требуется вычислить сумму двух дробей:

Мы уже знаем, как раскладываются на простые множители знаменатели:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби - на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:

2 ∙ 2 ∙ 3 ∙ 5 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.

Нетрудно видеть, что оба исходных знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, - и не просто кратно, оно является наименьшим общим кратным (НОК ) чисел 105 и 140. Это записывается так:

НОК(105, 140) = 420.

Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что

105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).

Точно так же, для произвольных натуральных чисел b и d :

b d = НОК(b , d ) ∙ НОД(b , d ).

Теперь давайте доведем до конца суммирование наших дробей:

3 ∙ 5 7

2 ∙ 2 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5

Примечание. Для решения некоторых задач требуется знать, что такое квадрат числа. Квадратом числа a называется число a , помноженное само на себя, то есть a a . (Как нетрудно видеть, оно равно площади квадрата со стороной a ).