Кристаллические решетки. Типы кристаллических решеток. Формула соли поваренной. Химическая формула: поваренная соль. Свойства поваренной соли
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Комбинированный.

Основная цель урока: Дать учащимся конкретные представления об аморфных и кристаллических веществах, типах кристаллических решеток, установить взаимосвязь между строением и свойствами веществ.

Задачи урока.

Образовательная: сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества, дать учащимся представление о законе постоянства состава.

Воспитательная: продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого- структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.

Развивающая: развивать познавательный интерес школьников, используя проблемные ситуации; совершенствовать умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Оборудование: Периодическая система Д.И.Менделеева, коллекция “Металлы”, неметаллы: сера, графит, красный фосфор, кислород; Презентация “Кристаллические решетки”, модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, смолы, воск, жевательная резинка, шоколад, компьютер, мультимедийная установка, видеопыт “Возгонка бензойной кислоты”.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

Затем сообщает тему урока и цель урока. Учащиеся записывают тему урока в тетрадь. (Cлайд 1, 2).

2. Проверка домашнего задания

(2 ученика у доски: Определить вид химической связи для веществ с формулами:

1) NaCl, CO 2 , I 2 ; 2) Na, NaOH, H 2 S (записывают ответ на доске и включаются в опрос).

3. Анализ ситуации.

Учитель: Что изучает химия? Ответ: Химия - это наука о веществах, их свойствах и превращениях веществ.

Учитель: Что же такое вещество? Ответ: Вещество - это то, из чего состоит физическое тело. (Cлайд 3).

Учитель: Какие агрегатные состояния веществ вы знаете?

Ответ: Существует три агрегатных состояния: твердое, жидкое и газообразное. (Cлайд 4).

Учитель: Приведите примеры веществ, которые при различных температурах могут существовать во всех трех агрегатных состояниях.

Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 0 0 С вода переходит в твердое состояние - лед, а при повышении температуры до 100 0 С мы получим водяной пар (газообразное состояние).

Учитель (дополнение): Любое вещество можно получить в твердом, жидком и газообразном виде. Кроме воды – это металлы, которые при нормальных условиях находятся в твердом состоянии, при нагревании начинают размягчаться, и при определенной температуре(t пл) переходят в жидкое состояние - плавятся. При дальнейшем нагревании, до температуры кипения, металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно перевести в жидкое и твердое состояние, понижая температуру: например, кислород, который при температуре (-194 0 С) превращается в жидкость голубого цвета, а при температуре (-218,8 0 С) затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества.

Учитель: Назовите, какие твердые вещества находятся у вас на столах.

Ответ: Металлы, пластилин, поваренная соль: NaCl, графит.

Учитель: Как вы думаете? Какое из этих веществ лишнее?

Ответ: Пластилин.

Учитель: Почему?

Делаются предположения. Если ученики затрудняются, то с помощью учителя приходят к выводу, что пластилин в отличие от металлов и хлорида натрия не имеет определенной температуры плавления - он (пластилин) постепенно размягчается и переходит в текучее состояние. Таков, например, шоколад, который тает во рту, или жевательная резинка, а также стекло, пластмассы, смолы, воск (при объяснении учитель демонстрирует классу образцы этих веществ). Такие вещества называют аморфными. (слайд 5), а металлы и хлорид натрия - кристаллические. (Cлайд 6).

Таким образом, различают два вида твердых веществ: аморфные и кристаллические. (слайд7).

1) У аморфных веществ нет определенной температуры плавления и расположение частиц в них строго не упорядочено.

Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены: атомов, молекул и ионов. Эти частицы расположены в строго определенных точках пространства, и, если эти узлы соединить прямыми линиями, то образуется пространственный каркас - кристаллическая решетка .

Учитель задает проблемные вопросы

Как объяснить существование твердых веществ со столь различными свойствами?

2) Почему кристаллические вещества при ударе раскалываются в определенных плоскостях, а аморфные вещества этим свойством не обладают?

Выслушать ответы учеников и подвести их к выводу :

Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено типом химической связи в данном веществе.

Проверка домашнего задания:

1) NaCl – ионная связь,

СО 2 – ковалентная полярная связь

I 2 – ковалентная неполярная связь

2) Na – металлическая связь

NаОН - ионная связь между Na + иОН - (О и Н ковалентная)

Н 2 S - ковалентная полярная

Фронтальный опрос.

  • Какая связь называется ионной?
  • Какая связь называется ковалентной?
  • Какая связь называется ковалентной полярной? неполярной?
  • Что называется электроотрицательностью?

Вывод: Прослеживается логическая последовательность, взаимосвязь явлений в природе: Строение атома->ЭО->Виды химической связи->Тип кристаллической решетки->Свойства веществ. (слайд 10).

Учитель: В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток : ионные, молекулярные, атомные и металлические. (Cлайд 11).

Результаты оформляются в следующую таблицу-образец таблицы у учеников на парте. (см. Приложение 1). (Cлайд 12).

Ионные кристаллические решетки

Учитель: Как вы думаете? Для веществ с каким видом химической связи будет характерен такой вид решетки?

Ответ: Для веществ с ионной химической связью будет характерна ионная решетка.

Учитель: Какие частицы будут находиться в узлах решетки?

Ответ: Ионы.

Учитель: Какие частицы называются ионами?

Ответ: Ионы-это частицы, имеющие положительный или отрицательный заряд.

Учитель: Какие ионы бывают по составу?

Ответ: Простые и сложные.

Демонстрация - модель кристаллической решетки хлорида натрия (NaCl).

Объяснение учителя: В узлах кристаллической решетки хлорида натрия находятся ионы натрия и хлора.

В кристаллах NaCl отдельных молекул хлорида натрия не существует. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , Na n Cl n , где n – большое число.

Связи между ионами в таком кристалле очень прочные. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки, нелетучи, хрупки. Расплавы их проводят электрический ток (Почему?), легко растворяются в воде.

Ионные соединения - это бинарные соединения металлов (I А и II A), соли, щелочи.

Атомные кристаллические решетки

Демонстрация кристаллических решеток алмаза и графита.

У учеников на столе образцы графита.

Учитель: Какие частицы будут находиться в узлах атомной кристаллической решетки?

Ответ: В узлах атомной кристаллической решетки находятся отдельные атомы.

Учитель: Какая химическая связь между атомами будет возникать?

Ответ: Ковалентная химическая связь.

Объяснения учителя.

Действительно, в узлах атомных кристаллических решеток находятся отдельные атомы, связанные между собой ковалентными связями. Так как атомы, подобно ионам, могут по-разному располагаться в пространстве, то образуются кристаллы разной формы.

Атомная кристаллическая решетка алмаза

В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Вопрос: Какие эти вещества по составу? Ответ: Простые по составу.

Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 3500 0 С), прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки

Учитель: Ребята, у вас на столах коллекция металлов, рассмотрим эти образцы.

Вопрос: Какая химическая связь характерна для металлов?

Ответ: Металлическая. Связь в металлах между положительными ионами посредством обобществленных электронов.

Вопрос: Какие общие физические свойства для металлов характерны?

Ответ: Блеск, электропроводность, теплопроводность, пластичность.

Вопрос: Объясните, в чем причина того, что у такого числа разнообразных веществ одинаковые физические свойства?

Ответ: Металлы имеют единое строение.

Демонстрация моделей кристаллических решеток металлов.

Объяснение учителя.

Вещества с металлической связью имеют металлические кристаллические решетки

В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки

Учитель демонстрирует и называет вещества: йод, сера.

Вопрос: Что объединяет эти вещества?

Ответ: Эти вещества являются неметаллами. Простые по составу.

Вопрос: Какая химическая связь внутри молекул?

Ответ: Химическая связь внутри молекул ковалентная неполярная.

Вопрос: Какие физические свойства для них характерны?

Ответ: Летучие, легкоплавкие, малорастворимые в воде.

Учитель: Давайте сравним свойства металлов и неметаллов. Ученики отвечают, что свойства принципиально отличаются.

Вопрос: Почему свойства неметаллов сильно отличаются от свойств металлов?

Ответ: У металлов связь металлическая, а у неметаллов ковалентная неполярная.

Учитель: Следовательно, и тип решетки другой. Молекулярная.

Вопрос: Какие частицы находятся в узлах решетки?

Ответ: Молекулы.

Демонстрация кристаллических решеток углекислого газа и йода.

Объяснение учителя.

Молекулярная кристаллическая решетка

Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H 2 ,O 2 ,N 2, I 2 , O 3 , белый фосфор Р 4 , но и сложные : твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи, способны к возгонке.

Вопрос : Какой процесс называется возгонкой или сублимацией?

Ответ : Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией .

Демонстрация опыта: возгонка бензойной кислоты (видеоопыт).

Работа с заполненной таблицей.

Приложение 1. (Слайд 17)

Кристаллические решетки, вид связи и свойства веществ

Тип решетки

Виды частиц в узлах решетки

Вид связи между частицами Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA,IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная неполярная - связь очень прочная

2. Ковалентная полярная - связь очень прочная

Простые веществ а : алмаз(C), графит(C) , бор(B), кремний(Si).

Сложные вещества:

оксид алюминия (Al 2 O 3), оксид кремния (IY)-SiO 2

Очень твердые, очень тугоплавкие, прочные,нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекуми- слабые силы межмолекулярного притяжения, а вот внутри молекулпрочная ковалентная связь Твердые вещества при особых условиях, которые при обычных- газы или жидкости

(О 2 ,Н 2 ,Cl 2 ,N 2 ,Br 2 ,

H 2 O, CO 2 ,HCl);

сера, белый фосфор, йод; органические вещества

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическаяразной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ-металлов- металлическая кристаллическая решетка; для неметаллов - атомная или молекулярная.

Работа с Периодической системой Д.И.Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IY A,Y A, YI A, YII A, YIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O , галогены и благородные газы ).

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA (кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IY A и бора в простом веществе кристаллическая решетка атомная; а у элементов Y A, YI A, YII A, YIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод:

Существует следующая закономерность: если известно строение веществ, то можно предсказать их свойства, или наоборот: если известны свойства веществ, то можно определить строение. (Cлайд 18).

Учитель: Посмотрите внимательно на таблицу. Какую еще классификацию веществ вы можете предложить?

Если ученики затрудняются, то учитель объясняет, что вещества можно разделить на вещества молекулярного и немолекулярного строения. (Cлайд 19).

Вещества молекулярного строения состоят из молекул.

Вещества немолекулярного строения состоят из атомов, ионов.

Закон постоянства состава

Учитель: Сегодня мы познакомимся с одним из основных законом химии. Это закон постоянства состава, который был открыт французским химиком Ж.Л.Прустом. Закон справедлив только для веществ молекулярного строения. В настоящее время закон читается так:”Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства”. Но для веществ с немолекулярным строением этот закон не всегда справедлив.

Теоретическое и практическое значение закона состоит в том, что на его основе состав веществ можно выразить с помощью химических формул(для многих веществ немолекулярного строения химическая формула показывает состав не реально существующей, а условной молекулы).

Вывод: химическая формула вещества заключает в себе большую информацию. (Cлайд 21)

Например, SO 3:

1. Конкретное вещество - серный газ, или оксид серы (YI).

2.Тип вещества - сложное; класс - оксид.

3. Качественный состав - состоит из двух элементов: серы и кислорода.

4. Количественный состав - молекула состоит из1 атома серы и 3 атомов кислорода.

5.Относительная молекулярная масса - M r (SO 3)= 32 + 3 * 16 = 80.

6. Молярная масса - М(SO 3) = 80 г/моль.

7. Много другой информации.

Закрепление и применение полученных знаний

(Слайд 22, 23).

Игра в крестики-нолики: зачеркните по вертикали, горизонтали, диагонали вещества, имеющие одинаковую кристаллическую решетку.

Рефлексия.

Учитель задает вопрос: “Ребята, что нового вы узнали на уроке?”.

Подведение итогов занятия

Учитель: Ребята, давайте подведем основные итоги нашего урока - ответьте на вопросы.

1. Какие классификации веществ вы узнали?

2. Как вы понимаете термин кристаллическая решетка.

3. Какие типы кристаллических решеток вы теперь знаете?

4. О какой закономерности строения и свойств веществ вы узнали?

5. В каком агрегатном состоянии вещества имеют кристаллические решетки?

6. С каким основным законом химии вы познакомились на уроке?

Домашнее задание: §22, конспект.

1. Составьте формулы веществ: хлорид кальция, оксид кремния (IY), азот, сероводород.

Определите тип кристаллической решетки и попытайтесь прогнозировать: каковы должны быть температуры плавления у этих веществ.

2. Творческое задание -> составить вопросы к параграфу.

Учитель благодарит за урок. Выставляет отметки ученикам.

В воде

35,6 г/100 мл (0 °C)
35,9 г/100 мл (+25 °C)
39,1 г/100 мл (+100 °C) Растворимость в метаноле 1,49 г/100 мл Растворимость в аммиаке 21,5 г/100 мл Оптические свойства Показатель преломления 1,544202 (589 нм) Структура Координационная геометрия Октаэдральная (Na +)
Октаэдральная (Cl -) Кристаллическая структура гранецентрированная кубическая, cF8 Классификация Рег. номер CAS 7647-14-5 PubChem Рег. номер EINECS 231-598-3 SMILES InChI RTECS VZ4725000 ChEBI ChemSpider Безопасность ЛД 50 3000–8000 мг/кг NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Кристалл хлорида натрия

Хлори́д на́трия или хлористый натрий (NaCl) - натриевая соль соляной кислоты . Известен в быту под названием поваренной соли , основным компонентом которой и является. Хлорид натрия в значительном количестве содержится в морской воде , придавая ей солёный вкус [ ] . Встречается в природе в виде минерала галита (каменной соли). Чистый хлорид натрия представляет собой бесцветные кристаллы, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Нахождение в природе и производство

В природе хлорид натрия встречается в виде минерала галита , который образует залежи каменной соли среди осадочных горных пород, прослойки и линзы на берегах солёных озёр и лиманов , соляные корки в солончаках и на стенках кратеров вулканов и в сольфатарах. Огромное количество хлорида натрия растворено в морской воде. Мировой океан содержит 4 × 10 15 тонн NaCl, то есть из каждой тонны морской воды можно получить в среднем 1,3 кг хлорида натрия. Следы NaCl постоянно содержатся в атмосфере в результате испарения брызг морской воды. В облаках на высоте полтора километра 30 % капель, больших 10 мкм по размеру, содержат NaCl. Также он найден в кристаллах снега.

Наиболее вероятно, что первое знакомство человека с солью произошло в лагунах тёплых морей или на соляных озёрах, где на мелководье солёная вода интенсивно испарялась под действием высокой температуры и ветра, а в осадке накапливалась соль. По образному выражению Пифагора , «соль была рождена благородными родителями: солнцем и морем» .

Галит

В природе хлорид натрия чаще всего встречается в виде минерала галита. Он имеет гранецентрированную кубическую решётку и содержит 39,34 % , 60,66 % . Другими химическими элементами, входящими в состав примесей, являются: , , , , , , , , , , , , , , , . Плотность 2,1-2, 2 г/см³, а твёрдость по шкале Мооса - 2. Бесцветный прозрачный минерал со стеклянным блеском. Распространённый минерал соленосных толщ. Образуется при осаждении в замкнутых водоёмах, а также как продукт сгона на стенках кратеров вулканов. Составляет пласты в осадочных породах лагунных и морских фаций, штокоподобные тела в соляных куполах и тому подобных.

Каменная соль

Каменной солью называют осадочную горную породу из группы эвапоритов, состоящую более чем на 90 % из галита. Галит также часто называют каменной солью. Эта осадочная горная порода может быть бесцветной или снежно-белой, но чаще она окрашена примесями глин, талька (серый цвет), оксидами и гидроксидами железа (жёлтый, оранжевый, розовый, красный), битумами (бурая). Каменная соль содержит хлориды и сульфаты натрия, калия, магния и кальция, бромиды, иодиды, бораты, гипс, примеси карбонатно-глинистого материала, доломита, анкериту, магнезита, битумов и так далее .

По условиям формирования месторождений каменную соль подразделяют на следующие виды :

  • рассолы современных соляных бассейнов
  • соляные подземные воды
  • залежи минеральных солей современных соляных бассейнов
  • ископаемые залежи (важнейшие для промышленности).

Морская соль

Морская соль является смесью солей (хлориды , карбонаты , сульфаты и т. д.), образующейся при полном испарении морской воды. Среднее содержание солей в морской воде составляет:

Очищенная кристаллическая морская соль

При испарении морской воды при температуре от +20 до +35 °C в осадке сначала кристаллизуются наименее растворимые соли - карбонаты кальция и магния и сульфат кальция. Затем выпадают более растворимые сульфаты натрия и магния, хлориды натрия, калия и магния, и после них - сульфаты калия и магния. Последовательность кристаллизации солей и состав осадка может несколько варьироваться в зависимости от температуры, скорости испарения и других условий. В промышленности морскую соль получают из морской воды, в основном методом обычного выпаривания. Она отличается от каменной соли значительно большим содержанием других химических солей, минералов и различных микроэлементов, в первую очередь йода, калия, магния и марганца. Соответственно, она отличается от хлорида натрия и по вкусу - горько-солёный привкус ей придают соли магния. Она используется в медицине: при лечении кожных заболеваний, таких как псориаз . Как лечебное вещество в аптечной и обычной торговой сети, распространённым продуктом является соль из Мёртвого моря . В очищенном виде этот вид соли также предлагается в продуктовой торговой сети - как натуральная и богатая йодом пищевая .

Залежи

Залежи каменной соли найдены во всех геологических системах. Важнейшие из них сосредоточены в кембрийских , девонских , пермских и третичных отложениях. Каменная соль составляет мощные пластовые залежи и ядра сводчатых структур (соляных куполов и штоков), образует прослойки, линзы, гнезда и вкрапления в других породах . Среди озёрных месторождений России крупнейшие - Эльтонское , Баскунчак в Прикаспии, Кучукское озеро , Кулундинское озеро , Эбейты и другие озёра в Западной Сибири.

Производство

В древности технология добычи соли заключалась в том, что соляную рапу (раствор) вытаскивали лошадиным приводом из шахт, которые назывались «колодцами» или «окнами», и были достаточно глубокими - 60-90 м. Извлечённый солевой раствор выливали в особый резервуар - творило , откуда она через отверстия стекала в нижний резервуар, и системой жёлобов подавалась в деревянные башни. Там её разливали в большие чаны, на которых соль вываривали.

На Руси поморы вываривали соль на побережье Белого моря и называли её морянка . В 1137 году новгородский князь Святослав определил налог на соляные варницы :

Беломорской солью, называемой «морянкой», торговали по всей Российской империи до начала XX века, пока её не вытеснила более дешёвая поволжская соль.

Современная добыча хлорида натрия механизирована и автоматизирована. Соль массово добывается выпариванием морской воды (тогда её называют морской солью) или рассола с других ресурсов, таких как соляные источники и соляные озера, а также разработкой соляных шахт и добычей каменной соли.
Для добычи хлорида натрия из морской воды необходимы условия жаркого климата с низкой влажностью воздуха, наличие значительных низменных территорий, лежащих ниже уровня моря, или затопляемых приливом, слабая водопроницаемость почвы испарительных бассейнов, малое количество осадков в течение сезона активного испарения, отсутствие влияния пресных речных вод и наличие развитой транспортной инфраструктуры.

Мировое производство соли в 2009 году оценивается в 260 миллионов тонн. Крупнейшими мировыми производителями являются Китай (60,0 млн тонн), США (46,0 млн тонн), Германия (16,5 млн тонн), Индия (15,8 млн тонн) и Канада (14 млн тонн) .

Применение

В пищевой промышленности и кулинарии

Соль поваренная

В пищевой промышленности и кулинарии используют хлорид натрия, чистота которого должна быть не менее 97 %. Его применяют как вкусовую добавку и для консервирования пищевых продуктов. Такой хлорид натрия имеет товарное название поваренная соль , порой также употребляются названия пищевая, столовая, а также уточнение названия в зависимости от её происхождения - каменная, морская, и по составу добавок - йодированная, фторированная и т. д. Такая соль является кристаллическим сыпучим продуктом с солёным вкусом без привкуса, без запаха (за исключением йодированной соли), в котором не допускаются посторонние примеси, не связанные с методом добывания соли. Кроме хлорида натрия, поваренная соль содержит небольшое количество солей кальция, магния, калия, которые придают ей гигроскопичности и жёсткости. Чем меньше этих примесей в соли, тем выше её качество.

Выделяют сорта: экстра, высший, первый и второй. Массовая доля хлористого натрия в сортах, %:

  • экстра - не менее 99,5;
  • высший - 98,2;
  • первый - 97,5;
  • второй - 97,0.

Массовая доля влаги в выварочной соли сорта «экстра» 0,1 %, в высшем сорте - 0,7 %. Допускают добавки йодида калия (йодистого калия), йодата калия, фторидов калия и натрия. Массовая доля йода должна составлять (40,0 ± 15,0) × 10 −4 %, фтора (25,0 ± 5,0) × 10 −3 %. Цвет экстра и высшего сортов - белый, однако для первого и второго допускается серый, желтоватый, розовый и голубоватый оттенки в зависимости от происхождения соли. Пищевую поваренную соль производят молотой и сеяной. По размеру зёрен молотую соль подразделяют на номера: 0, 1, 2, 3. Чем больше номер, тем больше зерна соли.

В кулинарии хлорид натрия потребляют как важнейшую приправу. Соль имеет характерный вкус, без которого пища кажется человеку пресной. Такая особенность соли обусловлена физиологией человека. Однако зачастую люди потребляют соли больше, чем нужно для физиологических процессов.

В коммунальном хозяйстве. Техническая соль

Зимой хлорид натрия, смешанный с другими солями, песком или глиной - так называемая техническая соль - применяется как антифриз против гололёда. Ею посыпают тротуары, хотя это отрицательно влияет на кожаную обувь и техническое состояние автотранспорта ввиду коррозийных процессов.

Регенерация Nа-катионитовых фильтров

Nа-катионитовые фильтры широко применяются в установках умягчения воды всех мощностей при водоподготовке. Катионитным материалом на современных водоподготовительных установках служат в основном глауконит , полимерные ионообменные смолы и сульфированные угли. Наиболее распространены сульфокатионитные ионообменные смолы.

Регенерацию Nа-катионитовых фильтров осуществляют 6-10%-м раствором поваренной соли, в результате катионит переводится в Na-форму, регенерируется. Реакции идут по уравнениям:

C a R 2 + 2 N a C l → 2 N a R + C a C l 2 {\displaystyle {\mathsf {CaR_{2}+2NaCl\rightarrow 2NaR+CaCl_{2}}}} M g R 2 + 2 N a C l → 2 N a R + M g C l 2 {\displaystyle {\mathsf {MgR_{2}+2NaCl\rightarrow 2NaR+MgCl_{2}}}}

Химическая промышленность

Соль, наряду с каменным углем, известняками и серой, образует «большую четвёрку» продуктов минерального сырья, которые являются важнейшими для химической промышленности . Из неё получают соду, хлор, соляную кислоту, гидроксид натрия, сульфат натрия и металлический натрий. Кроме этого соль используется также для промышленного получения легкорастворимого в воде хлората натрия, который является средством для уничтожения сорняков . Суммарное уравнение реакции электролиза горячего раствора хлорида натрия :

N a C l + 3 H 2 O → N a C l O 3 + 3 H 2 {\displaystyle {\mathsf {NaCl+3H_{2}O\rightarrow NaClO_{3}+3H_{2}}}}

Получение хлора и гидроксида натрия

  • на катоде как побочный продукт выделяется водород вследствие восстановления ионов H + , образованных в результате электролитической диссоциации воды:
H 2 O ⇄ H + + O H − {\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}} 2 H + + 2 e − → H 2 {\displaystyle {\mathsf {2H^{+}+2e^{-}\rightarrow H_{2}}}}
  • поскольку (вследствие практически полной электролитической диссоциации NaCl), хлор в растворе находится в виде хлорид-ионов, они окисляются на аноде до свободного хлора в виде газа:
N a C l → N a + + C l − {\displaystyle {\mathsf {NaCl\rightarrow Na^{+}+Cl^{-}}}}
  • суммарная реакция:
2 N a C l + 2 H 2 O → 2 N a O H + C l 2 + H 2 {\displaystyle {\mathsf {2NaCl+2H_{2}O\rightarrow 2NaOH+Cl_{2}+H_{2}}}}

Как видно из уравнения суммарной реакции, ещё одним продуктом является гидроксид натрия. Расход электроэнергии на 1 т хлора составляет примерно 2700 кВт × час. Полученный хлор при повышенном давлении сжижается в жёлтую жидкость уже при обычной температуре .

Если между анодом и катодом нет диафрагмы, то растворённый в воде хлор начинает реагировать с гидроксидом натрия, образуя хлорид и гипохлорит натрия NaClO :

2 N a O H + C l 2 → N a C l + N a O C l + H 2 O {\displaystyle {\mathsf {2NaOH+Cl_{2}\rightarrow NaCl+NaOCl+H_{2}O}}} N a + + e − → N a (H g) {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na_{(Hg)}}}}

Амальгаму позже разлагают горячей водой с образованием гидроксида натрия и водорода, а ртуть перекачивают насосом обратно в электролизер:

2 N a (H g) + 2 H 2 O → 2 N a O H + H 2 {\displaystyle {\mathsf {2Na_{(Hg)}+2H_{2}O\rightarrow 2NaOH+H_{2}}}}

Суммарная реакция процесса такая же, как и в случае диафрагменного метода.

Получение металлического натрия

Металлический натрий получают электролизом расплава хлорида натрия. Происходят следующие процессы:

  • на катоде выделяется натрий:
N a + + e − → N a {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na}}}
  • на аноде выделяется хлор (как побочный продукт):
2 C l − → C l 2 + 2 e − {\displaystyle {\mathsf {2Cl^{-}\rightarrow Cl_{2}+2e^{-}}}}
  • суммарная реакция:
2 N a + + 2 C l − → 2 N a + C l 2 {\displaystyle {\mathsf {2Na^{+}+2Cl^{-}\rightarrow 2Na+Cl_{2}}}}

Ванна электролизера состоит из стального кожуха с футеровкой , графитового анода и кольцевого железного катода. Между катодом и анодом располагается сетчатая диафрагма. Для снижения температуры плавления NaCl (+800 °C), электролитом является не чистый хлорид натрия, а его смесь с хлоридом кальция CaCl 2 (40:60) с температурой плавления +580 °C. Металлический натрий, который собирается в верхней части катодного пространства, содержит до 5 % примесь кальция, но последний со временем почти полностью отделяется, поскольку его растворимость в жидком натрии при температуре его плавления (+371 K = 98 °C) составляет всего 0,01 %. С расходованием NaCl его постоянно добавляют в ванну. Затраты электроэнергии составляют примерно 15 кВт × ч на 1 кг натрия .

Получение соляной кислоты и сульфата натрия

Среди многих промышленных методов получения соляной кислоты, то есть водного раствора хлороводорода (HCl), применяется реакция обмена между хлоридом натрия и серной кислотой:

N a C l + H 2 S O 4 → N a H S O 4 + H C l {\displaystyle {\mathsf {NaCl+H_{2}SO_{4}\rightarrow NaHSO_{4}+HCl\uparrow }}} N a C l + N a H S O 4 → N a 2 S O 4 + H C l {\displaystyle {\mathsf {NaCl+NaHSO_{4}\rightarrow Na_{2}SO_{4}+HCl\uparrow }}}

Первая реакция происходит в значительной степени уже при обычных условиях, а при слабом нагреве идёт почти до конца. Вторая происходит лишь при высоких температурах. Процесс осуществляется в специальных механизированных печах большой мощности. Хлороводород , который выделяется, обеспыливают, охлаждают и поглощают водой с образованием соляной кислоты. Как побочный продукт образуется сульфат натрия Na 2 SO 4 .

Этот метод применяется также для получения хлороводорода в лабораторных условиях.

Физические и физико-химические свойства

Температура плавления +800,8 °С, кипения +1465 °С.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в граммах на 100 г воды) равен 35,9 при +21 °C и 38,1 при +80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей - хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена. В чистом виде хлорид натрия не гигроскопичен. Однако соль часто бывает загрязнена примесями (преимущественно ионами Ca 2+ , Mg 2+ и SO2−
4 ), и такая соль на воздухе сыреет . Кристаллогидрат NaCl · 2H 2 O можно выделить при температуре ниже +0,15 °C .

Смесь измельчённого льда с мелким порошком хлорида натрия является эффективным охладителем. Так, смесь состава 30 г NaCl на 100 г льда охлаждается до температуры −20 °C. Это происходит потому, что водный раствор соли замерзает при температуре ниже 0 °C. Лёд, имеющий температуру около 0 °C, плавится в таком растворе, поглощая тепло окружающей среды.

Диэлектрическая проницаемость NaCl - 6,3

Плотность и концентрация водных растворов NaCl

Концентрация, % Концентрация, г/л Плотность, г/мл
1 10,05 1,005
2 20,25 1,012
4 41,07 1,027
6 62,47 1,041
8 84,47 1,056
10 107,1 1,071
12 130,2 1,086
14 154,1 1,101
16 178,5 1,116
18 203,7 1,132
20 229,5 1,148
22 256 1,164
24 283,2 1,18
26 311,2 1,197

Лабораторное получение и химические свойства

При действии серной кислоты выделяет хлороводород.

2 N a C l + H 2 S O 4 → N a 2 S O 4 + 2 H C l {\displaystyle {\mathsf {2NaCl+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2HCl}}}

С раствором нитрата серебра образует белый осадок хлорида серебра (качественная реакция на хлорид-ион).

N a C l + A g N O 3 → N a N O 3 + A g C l {\displaystyle {\mathsf {NaCl+AgNO_{3}\rightarrow NaNO_{3}+AgCl}}}

В кристаллической решётке между атомами преобладает ионная химическая связь , что является следствием действия электростатического взаимодействия противоположных по заряду ионов.

См. также

  • Поваренная соль - специя и пищевая добавка
  • Галит - минерал

Примечания

  1. Натрия хлорид на сайте англ. National Institute of Standards and Technology ) (англ.)
  2. Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М. : Химия , 1973. - 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 218
  3. Пифагор. Золотой канон. Фигуры эзотерики. - М. : Изд-во Эксмо, 2003. - 448 с. (Антология мудрости).
  4. Малая горная энциклопедия . В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  5. УНИАН: Морская соль для красоты и здоровья кожи
  6. Российское законодательство Х-XX веков. Законодательство Древней Руси. Т. 1. М. , 1984. С. 224-225.
  7. В переводе с поморской «говори» слово чрен (црен) означает четырёхугольный ящик, кованный из листового железа, а салга - котёл, в котором варили соль. Пузом в беломорских солеварнях называли мешок соли в два четверика, то есть, объёмом около 52 литров.
  8. Соль (PDF) , Геологический обзор США на сайте Программы минеральных ресурсов (англ.)
Испарение жидкости или плавление твердого тела относится к категории процессов, которые называются в физике фазовыми переходами или превращениями. Состояния вещества, между которыми происходит фазовый переход, называется его фазами. Характерной особенностью этих переходов является их скачкообразность. Например, при охлаждении воды ниже комнатной температуры, её тепловое состояние меняется постепенным образом, понижение температуры на десять-пятнадцать градусов к каким-либо видимым изменениям не приводит, и вдруг, при охлаждении на ничтожную долю градуса, вода переходит в совершенно иное состояние, состояние льда. Вода и лёд – две фазы одного и того же вещества.

Фазовые переходы бывают двух типов - первого и второго рода. К фазовым переходам первого рода относится изменение агрегатного состояния вещества: процессы плавления и кристаллизации, испарения и конденсации, сублимации или возгонки , при этом скачком изменяются плотность, внутренняя энергия, энтропия.

Следует заметить, что твердым считается кристаллическое состояние, т.е. состояние, в котором атомы располагаются в узлах кристаллической решетки. На рис. 2-5.1 изображена кристаллическая решетка каменной соли NaCl . Как видно из рисунка, кристалл, благодаря пространственной периодичности структуры, состоит как бы из повторяющихся частей.

В кристалле размером 1 мм повторяющееся расположение атомов встречается сотни тысяч раз. Поэтому к такому расположению атомов применяется термин “дальний порядок ”. Большинство твердых тел являются кристаллическими телами. В обычных условиях они состоят из сросшихся зерен размером порядка 0,001 мм. В таком зернышке отчетливо выражен дальний порядок.

Однако в природе встречаются твердые вещества со сложным молекулярным строением, например, стекла, смолы, пластики, которые не имеют периодической структуры. Это аморфные твердые тела, которые на самом деле являются жидкостями с аномально большой вязкостью. Такие тела приобретают свойство текучести не скачком, а путём постепенного уменьшения вязкости, которое вызывается повышением температуры. Аморфные твердые тела противопоставляются кристаллам, которые имеют форму правильного многогранника. Следует подчеркнуть, что кристалличность не обязательно проявляется в особенностях их внешней формы, это структура решетки (кусок металла не имеет правильной формы, но не является аморфным).

Каков же основной признак кристаллов? Этим признаком является наличие резко выраженной температуры плавления. Если подводить тепло к кристаллическому телу, то температура его будет повышаться до тех пор, пока не начнёт плавиться. После чего подъем температуры прекратится, и весь процесс плавления будет происходить при строго определённой постоянной температуре, называемой температурой плавления Т пл .

На рис. 2-5.2 изображены схемы строения кварца и кварцевого стекла. Одно и то же в химическом отношении вещество, но одно в кристаллическом, другое в аморфном виде. Характер окружения ближайшими соседями в обоих случаях одинаков, но в аморфном теле отсутствует дальний порядок; аморфное тело – это “испорченный кристалл”. Отсутствие дальнего порядка, характерного признака кристаллических тел, является непосредственной причиной отсутствия выраженной точки плавления. В точке плавления совершается переход, при котором дальний порядок исчезает и решетка распадается на легкоподвижные субмикроскопические области, имеющие то же расположение атомов, что и исходный кристалл, но статически беспорядочно ориентированные друг относительно друга, остаётся лишь ближний порядок в расположении атомов.

Схема строения кварца

а) кристаллический, б) аморфный

(рисунок соответствует упрощенной плоской модели)

В аморфных телах при повышении температуры характер расположения атомов не меняется, увеличивается их подвижность, атомы с увеличением температуры “выскальзывают” из своего окружения, меняя соседей. Наконец число таких перемен в секунду становится таким же большим, как для жидкости.

Выше мы говорили, что при всех агрегатных превращениях поглощается или выделяется энергия. Например, для превращения килограмма воды в пар необходимо затратить энергию 2,3×10 6 Дж. Эта энергия необходима для преодоления сил притяжения, действующих между молекулами воды.

Металлы начинают плавиться только тогда, когда начинает разрушаться их кристаллическая решетка, на что также необходимо затрачивать энергию. Эта энергия называется скрытой теплотой плавления. Теплота плавления, отнесённая к массе вещества, называется удельной скрытой теплотой плавления. Например, для цинка она составляет 1.11×10 5 Дж/кг, т.е. нужно количество теплоты 111 кДж/кг, чтобы при Т пл = 419.5°С перевести 1 кг цинка из твердого состояния в жидкое. На рис. 2-5.3 представлена кривая фазового перехода твердого тела в жидкость (1). Обратное превращение – кристаллизация (2) происходит при той же температуре и сопровождается поглощением того же количества энергии, что и при плавлении – скрытой теплоты кристаллизации. Скрытой теплота перехода называется потому, что подвод (поглощение) и отвод (выделение) этой теплоты не сопровождается таким эффектом, как повышение и понижение температуры. Несмотря на то, что мы продолжаем нагревать тело (кривая правления 1), во время плавления температура не повышается, так же во время кристаллизации (кривая кристаллизации 2) температура не понижается, хотя мы продолжаем охлаждать жидкость. Переход жидкость - твердое тело сопровождается выделением энергии. Энергия взаимодействия микроскопических кристаллов становится значительно выше энергии тепловых колебаний, жидкость кристаллизуется. Однако новая фаза при таком переходе образуется не сразу во всем объеме, сначала образуются зародыши ее, которые затем растут, распространяясь на весь объем.

К числу фазовых превращений первого рода относятся и некоторые переходы твердого тела из одной кристаллической модификации в другую. Эти превращения называются полиморфными. Кристаллы различной модификации состоят из одного и того же вещества и отличаются друг от друга лишь строением кристаллической решетки. Например, графит и алмаз состоят из одного и того же элемента – углерода. Разные структуры означают и разные физические свойства. Алмаз по физическим свойствам очень не похож на графит. Графит имеет черный цвет, он совершенно непрозрачен, алмаз же прозрачен и бесцветен; графит не горит даже при очень высоких температурах (он плавится при 385 °С), алмаз же в струе кислорода сгорает при 720 °С. Другой пример – белое и серое олово. Белое олово – блестящий, легкий и очень пластичный металл, серое олово – хрупкое и легко превращается в порошок.

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "-") существуют мощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько (рис. 1).

Рис. 1.

ионный связь поляризация

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора.

Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию. Притянутые друг к другу электростатическими силами, ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если температура очень велика (примерно 1500°C), то NaCl испаряется, образуя двухатомные молекулы. Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Ионные кристаллы отличаются высокими темпертурами плавления, обычно значительной шириной запрещенной зоны, обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра). Они могут быть построены как из одноатомных, так и из многоатомных ионов. Пример ионных кристаллов первого типа - кристаллы галогенидов щелочных и щелочно-земельных металлов; анионы располагаются по закону плотнейшей шаровой упаковки или плотной шаровой кладки, катионы занимают соответствующие пустоты. Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2. Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов. Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др. Кислотные остатки могут соединяться в бесконечные цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы, как, например, в кристаллических структурах силикатов. Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равную энтальпии сублимации; результаты хорошо согласуются с экспериментальными данными. Согласно уравнению Борна-Майера, для кристалла, состоящего из формально однозарядных ионов:

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

(R - кратчайшее межионное расстояние, А - константа Маделунга, зависящая от геометрии структуры, В и r - параметры, описывающие отталкивание между частицами, C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов, E0 - энергия нулевых колебаний, е - заряд электрона). С укрупнением катиона возрастает вклад диполь-дипольных взаимодействий.

Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой .

Точки, в которых размещены частицы, называются узлами кристаллической решетки . В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные , атомные , молекулярные и металлические .

Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером может служит кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион — шестью ионами натрия. Такому расположению соответствует наиболее плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле. Очень часто кристаллические решетки изображают, как показано на рис , где указывается только взаимное расположение частиц, но не их размеры.

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, называется координационным числом .

В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl — , Na n Cl n , где n — большое число. Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.

Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и уменьшению прочности связи между ними. Поэтому расплавы их проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными . Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4 . В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.

Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными .

Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной решеткой невелико.

Примерами их являются лед, твердый оксид углерода (IV) ("сухой лед"), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F 2 , Сl 2 , Br 2 , I 2 , Н 2 , О 2 , N 2), трех- (О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Молекулярная кристаллическая решетка йода показана на рис . Большинство кристаллических органических соединений имеют молекулярную решетку.