Между молекулами вещества действуют как силы. Взаимодействие атомов и молекул вещества. Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в сильной степени

Силы межмолекулярного взаимодействия.

Когда вещество находится в газообразном состоянии , тогда образующие его частицы – молекулы или атомы – хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы .


Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики . Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличии от газов, постоянный при данной температуре объём.


Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу . Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента, ионами или молекулами – эти силы существенно различны .

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью .

Металлы

Если вещество – металл , то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение , то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.


Силы межмолекулярного взаимодействия , называемые также силами Ван-дер-Ваальса , слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей , но в различных веществах механизм возникновения диполей различен.


1. Ориентационное взаимодействие.


Если вещество состоит из полярных молекул , например, Н 2 О, НCl , то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами , вследствии чего наблюдается их взаимное притяжение.


Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием . Тепловое движение молекул препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.


2. Индукционное взаимодействие.


В случае веществ, состоящих из неполярных , но способных к поляризации молекул, например СО2, наблюдается возникновение наведённых или индуцированных диполей .


Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле, оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся индуцированный диполь в свою очередь поляризует соседние молекулы.


В результате происходит взаимное притяжение молекул друг к другу . Это индукционное взаимодействие наблюдается также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.


3. Дисперсионное взаимодействие.


Дисперсионные силы (Лондоновские силы) - силы электростатического притяжения мгновенного и индуцированного (наведённого) диполей электрически нейтральных атомов или молекул.


В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей .


Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.


Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно , причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению .


Это явление, называемое дисперсионным взаимодействием , имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.


Соотношение молекулярных сил.


Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.


Чем больше полярность молекул, тем больше ориентационные силы .


Чем крупнее атомы , чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако, тем значительнее дисперсионные силы .


Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов , составляющих размеры этих веществ.


Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего
    межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95% ,
  • для HI - 99,5% .

    • Индукционные силы почти всегда малы .


Вступление

Контактное взаимодействие кристаллических тел между собой,а также с газами и жидкостями также сопровождается появлением междумолекулярных или межатомных связей между элементарными частицами контактирующих веществ.

Строение вещества определяется не только взаимным расположением атомов в химических частицах, но и расположением этих химических частиц в пространстве. Наиболее упорядочено размещение атомов, молекул и ионов в кристаллах (от греческого "кристаллос" - лед), где химические частицы (атомы, молекулы, ионы) расположены в определенном порядке, образуя в пространстве кристаллическую решетку. При определенных условиях образования они могут иметь естественную форму правильных симметричных многогранников. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц и симметрией кристаллической решетки.

Межмолекулярные силы взаимодействия и их природа

Межмолекулярное взаимодействие - взаимодействие между электрически нейтральными молекулами или атомами; определяет существование жидкостей и молекулярных кристаллов, отличие реальных газов от идеальных и проявляется в разнообразных физических явлениях. Межмолекулярное взаимодействие зависит от расстояния r между молекулами и, как правило, описывается потенциальной энергией взаимодействия U(r) (потенциалом М. в.), так как именно средняя потенциальная энергия взаимодействия определяет состояние и многие свойства вещества.

Впервые М. в. принял во внимание Я. Д. Ван дер Ваальс (1873) для объяснения свойств реальных газов и жидкостей. Ван дер Ваальс предположил, что на малых расстояниях r между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. На основе этих представлений, даже не рассматривая количественной зависимости Межмолекулярных взаимодействий от расстояния, он получил так называемое Ван-дер-Ваальса уравнение состояния реального газа.

Ван-дер-Ваальсовы силы -- силы межмолекулярного взаимодействия с энергией 0,8 -- 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, но сейчас он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей.

К Ван-дер-Ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул. Существует три типа Ван-дер-Ваальсовых сил:

1. Ориентационные силы,

2. Дисперсионные (лондоновские) силы,

3. Индукционные силы.

До сих пор многие авторы исходят из предположения, что Ван-дер-Ваальсовые силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, "описывающие" свойства, в частности графита и нитрида бора.

Проявления в природе:

· Сцепление частиц малых астероидов, кольца Сатурна;

· Способность гекконов ходить по абсолютно гладким поверхностям, например стеклу

Уравнение состояния газа Ван-дер-Ваальса -- уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные -- не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия U становится функцией не только температуры, но и объёма.

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

*p -- давление,

*V -- объём,

*T -- абсолютная температура,

*R -- универсальная газовая постоянная.

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает силы притяжения между молекулами (давление на стенку уменьшается, т.к. есть силы, втягивающие молекулы приграничного слоя внутрь), поправка b -- силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).

Для н молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

Внутренняя энергия газа Ван-дер-Ваальса:

Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы, при разведении молекул на бесконечность:

Внутренняя энергия газа Ван-дер-Ваальса складывается из его кинетической энергии (энергии теплового движения молекул) и только что нами посчитанной потенциальной. Так, для одного моль газа:

где -- молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.

Силы притяжения:

Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами. Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии.Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Взаимодействие диполей зависит от их взаимной ориентации, и поэтому силы дипольного взаимодействия называются ориентационными. Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориентациям значение силы имеет определённую величину, не равную нулю.

Силы отталкивания:

Силы отталкивания действуют между молекулами на очень малых расстояниях, когда приходят в соприкосновение заполненные электронные оболочки атомов, входящих в состав молекул. Существующий в квантовой механике принцип Паули запрещает проникновение заполненных электронных оболочек друг в друга. Возникающие при этом силы отталкивания зависят в большей степени, чем силы притяжения, от индивидуальности молекул.

Индукционные силы

Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределёнными по объёму. Положительные заряды смещаются по направлению электрического поля (то есть от положительного полюса), а отрицательные -- против (к положительному полюсу). В результате у неполярной молекулы индуцируется дипольный момент.

Эта энергия называется индукционной, так как она появляется благодаря поляризации молекул, вызванной электростатической индукцией.

Дисперсионные силы

Между неполярными молекулами действует дисперсионное межмолекулярное взаимодействие. Природа этого взаимодействия была выяснена полностью только после создания квантовой механики. В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции.

Межмолекулярное взаимодействие данного типа называется дисперсионным потому, что дисперсия света в веществе определяется теми же свойствами молекул, что и это взаимодействие. Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от того, есть ли у молекул (атомов) постоянные дипольные моменты или нет. Обычно эти силы превосходят по величине как ориентационные, так и индукционные. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, F or > F disp (в 3 раза для молекул воды). При взаимодействии же таких полярных молекул, как CO, HI, HBr и других, дисперсионные силы в десятки и сотни раз превосходят все остальные.

Природа межмолекулярного взаимодействия

Межмолекулярное взаимодействие имеет электрическую природу и складывается из сил притяжения (ориентационных, индукционных и дисперсионных) и сил отталкивания.

Ориентационные силы

Два электрических диполя ab и cd при указанном взаимном расположении притягиваются, т. к. разноимённые заряды в точках b и с взаимодействуют сильнее, чем одноимённые заряды в точках а и с (а также в b и d).

Междумолекулярные силы увеличиваются при увеличении давления и уменьшаются при увеличении температуры.

Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами. Потенциальная энергия ориентационного межмолекулярного взаимодействия:

где p 1 ,p 2 -- дипольные моменты взаимодействующих молекул.

Множество опытных фактов приводят к заключению, что между молекулами вещества, находящемся в любом агрегатном состоянии, действуют одновременно как силы притяжения, так и силы отталки­вания. Так, например, способность твердых тел оказывать сопротив­ление растяжению свидетельствует о наличии сил притяжения между молекулами; существование же сил отталкивания объясняет малую сжимаемость твердых и жидких тел, а также сильно уплотненных га­зов. Очень важно, что эти силы должны действовать одновременно. В противном случае тело не было бы устойчиво: образующие его мо­лекулы разлетались бы в разные стороны (при наличии только сил отталкивания), создавая сверхнизкие плотности вещества, или "сли­пались" бы в сверхплотные агрегаты (при существовании только сил притяжения).

Расчет сил взаимодействия между молекулами и выяснение природы этих сил возможно только в рамках квантовой механики. Однако ха­рактерный, качественный вид молекулярных сил можно получить, оста­ваясь в пределах самых общих классических представлений.

Силы, действующие между молекулами, по своей природе являют­ся силами электромагнитного происхождения. Молекула состоит из положительно заряженных ядер атомов, составляющих молекулу, и от­рицательно заряженных электронных оболочек атомов. Поэтому при взаимодействий молекул одновременно действуют как силы притяжения их разноименных зарядов, так и силы отталкивания одноименных. И те и другие с увеличением расстояния между молекулами быстро уменьша­ются. Однако убывание сил отталкивания должно быть более быстрым, чем сил притяжения, в результате чего силы отталкивания будут пре­обладать на малых расстояниях между молекулами, а силы притяжения - на более дальних расстояниях. Последнее утверждение следует из необходимости существования устойчивого равновесия взаимодействую­щих молекул. В самом деле, предположим, что две взаимодействующие молекулы находятся в равновесии, т.е. сумма сил, действующих на каждую молекулу равна нулю. На рис.1,а изображены такие две моле­кулы, находящиеся на таком расстоянии, что силы отталкивания F 1 уравновешивают силы взаимного притяжения F 2 . Пусть расстояние между молекулами уменьшилось (рис.1,б). Если при этом силы отталкивания возрастают быстрее, чем силы притяжения, то F 1 будет больше F 2 , и молекулы будут отталкиваться обратно к положениям равновесия. Если же расстояние между ними будет больше равновесно­го (рис.1,в) и F 1 станет меньше F 2 , то молекулы опять будут стремиться к положению равновесия.

Таким образом, доказано, что с точки зрения устойчивости си­лы отталкивания должны быстрее убывать с увеличением расстояния, чем силы притяжения. На расстояниях между молекулами значительно большем их диаметра (рис1,г) молекулы практически не взаимодей­ствуют, так как вращающиеся вокруг ядер электроны полностью ком­пенсируют заряды этих ядер и молекулы в целом нейтральны. При сближении молекул (рис.1,д) начинает постепенно проявляться взаи­модействие электрических зарядов ядер и электронных оболочек молекул. Это происходит из-за притяжения разноименных и отталкивания одно­именных зарядов. В результате возникнет небольшая деформация (по­ляризация) обеих взаимодействующих молекул, как это условно пока­зано на рис 1,д. Как следствие между молекулами возникнут силы притяжения. При дальнейшем сближении поляризация молекул и вели­чина сил притяжения будут расти. Если молекулы сблизятся до такой степени, что их электронные облака начнут заметно проникать друг в друга, то электроны и ядра различных молекул будут резко оттал­киваться с силой, которая очень быстро возрастает с уменьшением расстояния между молекулами. На таких расстояниях будут преобладать силы отталкивания (рис.1,е).


Абсолютная величина сил взаимодействия существенно зависит от конкретного строения молекул. Кроме того, для несферических молекул силы электрического взаимодействия зависят, очевидно, не только от расстояния между молекулами, но и от взаимной ориентации молекул. Однако общий характер зависимости силы взаимодействия от расстояния одинаков: преобладание сил притяжения на больших расстояниях и отталки­вания на малых.

На рис.2 приведены характерные зависимости сил отталкивания, которые в физике положительны (F 1 >0 ), и сил притяжения (F 2 <0 ) от расстояния r между молекулами. Как отмечалось, эти силы дей­ствуют одновременно. Поэтому для нахождения результирующей силы взаимодействия между молекулами необходимо сложить ординаты положительной и быстро падающей силы отталкивания F 1 с отрицательными ординатами медленно растущей силы притяжения F 2 .

Результирующая функция F = F 1 + F 2 представлена на том же рисунке сплошной линией. Как видно, на расстояниях r между молекулами преобла­дают силы отталкивания, а при r>r 0 превалируют силы притяжения. При r = r 0 эти силы равны, т.е. r 0 – это то равновесное расстояние между молекулами, на котором они находились бы при отсутствии теп­лового движения, нарушающего это равновесие.

В молекулярной физике оперируют не с силами, а с потенциаль­ными энергиями взаимодействий. Чтобы осуществить переход от сил к потенциальным энергиям, рассмотрим работу, совершаемую результи­рующей силой F при изменении расстояния между молекулами на dr:

dA = Fdr (В.11)

Эта работа совершается за счет уменьшения потенциальной энергии взаимодействия молекул:

dA = - dE p (В.12)

Из выражений (В.11) и (В.12)

dE p = - Fdr (В.13)

Интегрируя соотношение (В.13) по r от r до бесконечности,

получим

Потенциальную энергию полагают равной нулю при бесконечно большом расстоянии между молекулами, т.е. . Тогда

(В.15)

Из последнего соотношения видно, что потенциальная энергия E p (r) взаимодействия молекул, находящихся на расстоянии r друг от друга, численно равна площади, ограниченной кривой результирующей силы F(r) , осью r и вертикальной прямой r = const . Зависимость величины этой площади (т.е. E p (r) ) от r показана на рис.3.

Из рисунка видно, что при перемещении некоторой молекулы 1 из бесконечности к молекуле 2, которая расположена в начале коорди­нат, потенциальная энергия их взаимодействия убывает от нуля до E p 0 . На этом участке перемещения, т.е. от r = ∞ до r = r 0 , на молекулу 1 действует сила притяжения, которая увеличивает ее скороcть (кинетическую энергию). При дальнейшем сближении молекул (на участке, где r < r 0 ) на молекулу 1 действует сила

Молекулярные силы. Между молекулами вещества существуют силы взаимодействия, называемые молекулярными силами. Если бы между молекулами не было сил притяжения, то все вещества при любых условиях находились бы только в газообразном состоянии. Лишь благодаря силам притяжения молекулы удерживаются друг возле друга и образуют жидкие и твердые тела.

Однако одни только силы притяжения не могут обеспечить существование устойчивых образований из атомов и молекул. На очень малых расстояниях между молекулами действуют силы отталкивания.

Строение атомов и молекул. Атом, а тем более молекула, – это сложная система, состоящая из отдельных заряженных частиц – электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними на малых расстояниях действуют значительные электрические силы. Происходит взаимодействие между электронами и ядрами соседних молекул. Описание движения частиц внутри атомов и молекул и сил взаимодействия между молекулами очень сложная задача. Ее рассматривают а атомной физике. Мы приведем только результат: примерную зависимость силы взаимодействия двух молекул от расстояния между ними.

Атомы и молекулы состоят из заряженных частиц противоположных знаков заряда. Между электронами одной молекулы и атомными ядрами другой действуют силы притяжения. Одновременно между электронами обеих молекул и между их ядрами действуют силы отталкивания.
Вследствие электрической нейтральности атомов и молекул молекулярные силы являются короткодействующими. На расстояниях, превышающих размеры молекул в несколько раз, силы взаимодействия между ними практически не сказываются.

Зависимость молекулярных сил от расстояния между молекулами. Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция силы взаимодействия между ними на прямую, соединяющую центры молекул. На расстояниях, превышающих 2-3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро возрастает, когда электронные оболочки атомов начинают перекрываться. В результате на сравнительно больших расстояниях молекулы притягиваются, а на малых отталкиваются.

На рисунке 8 изображена примерная зависимость проекции силы отталкивания от расстояния между центрами молекул (верхняя кривая), проекции силы притяжения (нижняя кривая) и проекция результирующей силы (средняя кривая). Проекция силы отталкивания положительна, а проекция силы притяжения отрицательна. Тонкие вертикальные линии проведены для удобства выполнения сложения проекций сил.

На расстоянии r 0 , равном примерно сумме радиусов молекул, проекция результирующей силы F r = 0, так как сила притяжения равна по модулю силе отталкивания (рис. 9, а). При r > r 0 сила притяжения превосходит силу отталкивания и проекция результирующей силы (жирная стрелка) отрицательна (рис 9, б).

Если r → ∞, то F r → 0. На расстояниях r < r 0 сила отталкивания превосходит силу притяжения (рис. 9, в).

Происхождение сил упругости. Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее r0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходное положение после прекращения внешнего воздействия.

При малом смешении молекул из положений равновесна сила притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис 8). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.

Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул приходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях в миллионы раз превышающих размеры молекул.

3!ГАЗООБРАЗНОЕ СОСТ.

ЖИДКОЕ СОСТ.

ТВЕРД СОСТ.

4! ГА́З (франц. gaz, от греч. chaos - хаос) , агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Газообразное состояние вещества является самым распространенным состоянием вещества Вселенной. Солнце, звезды, облака межзвездного вещества, туманности, атмосферы планет и т. д. состоят из газов, или нейтральных, или ионизованных (плазмы) . Газы широко распространены в природе: они образуют атмосферу Земли, в значительных количествах содержатся в твердых земных породах, растворены в воде океанов, морей и рек. Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов. Газы равномерно заполняют доступное для них пространство, и в отличие от жидкостей и твердых тел, не образуют свободной поверхности. Они оказывают давление на ограничивающую заполняемое ими пространство оболочку. Плотность газов при нормальном давлении на насколько порядков меньше плотности жидкостей. В отличие от твердых тел и жидкостей, объем газов существенно зависит от давления и температуры. Свойства большинства газов - прозрачность, бесцветность и легкость - затрудняло их изучение, поэтому физика и химия газов развивались медленно.

Только в 17 в. было доказано, что воздух обладает весом (Э. Торричелли и Б. Паскаль) . Тогда же Я. ван Гельмонт ввел термин газы для обозначения воздухоподобных веществ. И только к середине 19 в. были установлены основные закономерности, которым подчиняются газы. К ним относятся закон Бойля - Мариотта, закон Шарля, закон Гей-Люссака, закон Авогадро. Наиболее полно изучены были свойства достаточно разряженных газов, в которых расстояния между молекулами при нормальных условиях порядка 10 нм, что значительно больше радиуса действия сил межмолекулярного взаимодействия. Такой газ, молекулы которого рассматриваются как невзаимодействующие материальные точки, называется идеальным газом. Идеальные газы строго подчиняются законам Бойля - Мариотта и Гей-Люссака. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах. Уравнение pV=RT называют уравнением состояния идеального газа. Оно было получено в 1834 Б. Клапейроном и обобщено Д. И. Менделеевым для любой массы газа. Входящая в это уравнение газовая постоянная R равна 8,31 Дж/моль. град. Уравнение Клапейрона - Менделеева справедливо только для идеальных газов. Для них выполняется также закон Дальтона. Молекулярно-кинетическая теория газов рассматривает газы как совокупность слабо взаимодействующих частиц (молекул или атомов) , находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удается объяснить основные физические свойства газов, особенно полно - свойства разреженных газов. У достаточно разреженных газов средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см3 газа находится ~ 1019 молекул и среднее расстояние между ними составляет ~ 10-6 см. С точки зрения молекулярно-кинетической теории давление газов является результатом многочисленных ударов молекул газа о стенки сосуда, усредненных по времени и по стенкам сосуда. При нормальных условиях и макроскопических размерах сосуда число ударов об 1см2 поверхности составляет примерно 1024 в секунду. Любое вещество можно перевести в газообразное состояние соответствующим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически изображают в переменных: давление р - температура Т (на р-Т-диаграмме) . Существует критическая температура Тк, ниже которой эта область ограничена кривыми сублимации (возгонки) и парообразования

5! Число Авогадро:

6,02214129(27)·10²³ моль⁻¹

6!Ва́куум (от лат. vacuus - пустой) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлении значительно ниже атмосферного . Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенкамивакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

7! Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.
Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.
Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми - Дирака или Бозе - Эйнштейна) .

Классический идеальный газ.
Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:
объём частицы газа равен нулю (то есть, диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними,) ;
импульс передается только при соударениях (то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях) ;
суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучения)
В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия - сумме энергий частиц газа. Свойства идеального газа описываются уравнением Менделеева - Клапейрона
где - давление, - концентрация частиц, - постоянная Больцмана, - абсолютная температура.

Равновесное распределение частиц классического идеального газа по состояниям описывается распределением Больцмана:
где - среднее число частиц, находящихся в -ом состоянии с энергией, а константа определяется условием нормировки:
где - полное число частиц.
Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми - Дирака и Бозе - Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа.

Для любого идеального газа справедливо соотношение Майера:
где - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

9!Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 .Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

P - давление газа,

T - температура газа (в градусах Кельвина),

k - константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде.

Строение газов, жидкостей и твердых тел.

Основные положения молекулярно-кинетической теории :

    все вещества состоят из молекул, а молекулы из атомов,

    атомы и молекулы находятся в постоянном движении,

    между молекулами существуют силы притяжения и отталкивания.

В газах молекулы двигаются хаотически, расстояния между молекулами большие, молекулярные силы малы, газ занимает весь предоставленный ему объем.

В жидкостях молекулы располагаются упорядочно только на малых расстояниях, а на больших расстояниях порядок (симметрия) расположения нарушается – “ближний порядок”. Силы молекулярного притяжения удерживают молекулы на близком расстоянии. Движение молекул – “перескоки ” из одного устойчивого положения в другое (как правило, в пределах одного слоя. Таким движением объясняется текучесть жидкости. Жидкость не имеет форму, но имеет объем.

Твердые тела – вещества, которые сохраняют форму, делятся на кристаллические и аморфные. Кристаллические твердые тела имеют кристаллическую решетку, в узлах которой могут находиться ионы, молекулы или атомы Они совершают колебания относительно устойчивых положений равновесия.. Кристаллические решетки имеют правильную структуру по всему объему – “дальний порядок” расположения.

Аморфные тела сохраняют форму, но не имеют кристаллической решетки и, как следствие, не имеют ярко выраженной температуры плавления. Их называют застывшими жидкостями, так как они, как жидкости имеют “ближний ” порядок расположения молекул.

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания. Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др. Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе. Как это объяснить? Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален. Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна. Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул. Между телами в природе могут существовать гравитационные и электромагнитные силы. Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет. Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения. При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания. Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия. Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул. Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией. Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы. Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел. Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся. Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул. Слабое взаимодействие частиц. Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями. Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости. В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы. По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами. Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.

Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся. Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул. Частицы вещества практически не взаимодействуют. Газы характеризуются полной беспорядочностью расположения и движения молекул.

Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться. Газы легко сжимаются под действием внешнего давления, т.к. расстояния между молекулами велики, а силы взаимодействия пренебрежимо малы. Давление газа на стенки сосуда создается ударами движущихся молекул газа.