Нарушение обмена веществ у детей: причины, симптомы и лечение. Обмен веществ и его особенности у детей различных возрастных групп Видимые признаки замедленной работы организма

У ребенка первоначальное повышение основного обмена происходит до 1,5 лет, затем основной обмен продолжает неуклонно повышаться в абсолютном выражении и закономерно снижается в расчете на единицу массы тела.

Суммарная энергия, поступившая с пищей, распределяется на обеспечение основного обмена, специфически-динамическое действие пищи, потери тепла, связанные с экскрецией, двигательную активность и рост. В структуре распределения энергии различают:

1) Е поступившая (из пищи) = Е депонированная + Е использованная;

2) Е абсорбированная = Е поступившая – Е выведенная с экскрементами;

3) Е метаболизируемая = Е поступившая – Е обеспечения (жизни) и активности, или основных затрат;

4) Е основных затрат равна сумме энергий:

а) основного обмена;

б) терморегуляции;

в) согревающего эффекта пищи (СДДП);

г) затрат на активность;

д) затрат на синтез новых тканей.

Е депонированная – это энергия, затраченная на отложение белка и жира. Гликоген не учитывается, так как его отложение незначительное.


Е депонированная = Е метаболизируемая – Е основных затрат;

Е стоимости роста = Е синтеза новых тканей + Е депонированная в новой ткани.


Главные возрастные различия заключаются в отношении между затратами на рост и на активность, причем затраты на рост имеют наиболее существенное значение для маловесного новорожденного и в течение первого года жизни, у взрослого человека они отсутствуют. Физическая активность требует значительных затрат энергии даже у новорожденного и грудного ребенка, где ее выражением являются сосание груди, беспокойство, плач и крик. При беспокойстве ребенка расход энергии возрастает на 20–60 %, а при крике – в 2–3 раза. При повышении температуры тела на 1 °C повышение основного обмена составляет 10–16 %.

Энергозатраты роста

У детей много энергии затрачивается на пластический обмен (рост). Для накопления 1 г массы тела организму необходимо затратить приблизительно 29,3 кДж, или 7 ккал.


Энергетическая стоимость роста = Е синтеза + Е депонирования в новой ткани.


У недоношенного маловесного ребенка Е синтеза составляет от 0,3 до 1,2 ккал на 1 г, прибавленной к массе тела, у доношенного – 0,3 ккал на 1 г массы тела.

Общая энергия стоимости роста до 1 года = 5 ккал на 1 г новой ткани, после 1 года – 8,7-12 ккал на 1 г новой ткани, или около 1 % суммы калорий питания. Наиболее интенсивен рост во внутриутробном периоде развития. Темп роста продолжает оставаться высоким и в первые месяцы жизни, о чем свидетельствует значительная прибавка массы тела. У детей первых 3 месяцев жизни доля пластического обмена в расходовании энергии составляет 46 %, затем на первом году жизни она снижается, с 4 лет (особенно в пубертантном периоде) при значительном увеличении роста пластический обмен вновь увеличивается. В среднем у детей 6-12 лет на рост расходуется 12 % энергетической потребности. На трудно учитываемые потери (фекалии, пищеварительные соки и секреты, вырабатываемые в стенке пищеварительного тракта, слущивающийся эпителий кожи, волосы, ногти, пот) затрачивается у детей старше года 8 % энергетических затрат. Расход энергии на активность и поддержание постоянства температуры тела изменяется с возрастом ребенка. В течение первых 30 мин после рождения температура тела у новорожденного снижается почти на 2 °C, что вызывает значительный расход энергии. У детей раннего возраста на поддержание постоянной температуры тела при температуре окружающей среды ниже критической (28–32 °C) организм ребенка вынужден тратить 48-100 ккал/(кг х сутки). С возрастом увеличивается абсолютная затрата энергии на эти компоненты. Доля расхода на постоянство температуры тела у детей первого года жизни тем ниже, чем меньше ребенок, затем вновь происходит понижение расхода энергии, так как поверхность тела, отнесенная на 1 кг массы тела, вновь уменьшается. В то же время увеличивается расход энергии на активность. У детей в возрасте 6-12 лет доля энергии, расходуемая на физическую активность, составляет 25 % энергетической потребности, а у взрослого – 33 %. Специфически-динамическое действие пищи изменяется в зависимости от характера питания. Сильнее оно выражено при богатой белками пище, менее – при приеме жиров и углеводов. У детей второго года жизни динамическое действие пищи составляет 7–8 %, у детей более старшего возраста – более 5 %. Расходы на реализацию и преодоление стресса в среднем составляют 10 % от суточного энергетического расхода (см. табл. 13). Даже умеренная недостаточность энергии питания (4–5 %) может стать причиной задержки развития ребенка, делая пищевую энергетическую обеспеченность условием адекватности роста и развития.

Таблица 13. Рекомендации по энергетической ценности питания детей (МЗ России, 1991 г.)

Примеры использования общих возрастных стандартов.

1. Расчетный метод определения основного обмена:

1) до 3 лет; 3-10 лет;10–18 лет;

2) мальчики: Х = 0,249 – 0,127; Х = 0,095 + 2,110; Х = 0,074 + 2,754;

3) девочки: Х = 0,244 – 0,130; Х = 0,085 + 2,033; Х = 0,056 + 2,898.

2. Дополнительные расходы:

1) компенсация повреждений – основной обмен умножается на:

а) при малой хирургии – 1,2;

б) при скелетной травме – 1,35;

в) при сепсисе – 1,6;

г) при ожогах – 2,1;

2) специфически-динамическое действие пищи: + 10 % от основного обмена;

3) физическая активность: прибавляется процент от основного обмена:

а) прикованность к постели – 10 %;

б) сидит в кресле – 20 %;

в) палатный режим больного – 30 %;

4) затраты на лихорадку: на 1 °C среднесуточного повышения температуры тела +10–12 % от основного обмена;

5) прибавка массы тела: до 1 кг в неделю (еще прибавляется 300 ккал/день).

Расчет энергообеспечения ориентирован на ликвидацию дефицита углеводов и жиров при обеспечении необходимыми сопутствующими микронутриентами, такими как калий, фосфаты, витамины группы В (особенно тиамин и рибофлавин), антиоксиданты.

2. Особенности белкового обмена и потребность в белке детей различного возраста. Семиотика нарушений

Белки выполняют в организме различные функции:

1) пластические функции – распад белка с высвобождением аминокислот, в том числе незаменимых;

2) белки – составная часть различных ферментов, гормонов, антител;

3) белки участвуют в поддержании кислотно-щелочного состояния;

4) белки – источник энергии, при распаде 1 г белка образуется 4 ккал;

5) белки осуществляют транспорт метаболитов.

По разнице между азотом пищи и его выделением и мочой, и фекалиями судят о его потреблении для образования новых тканей.

У детей после рождения или маловесных несовершенство усвоения любого пищевого белка может приводить к неутилизации азота. В противоположность взрослым у детей положительный азотистый баланс: количество поступившего азота с пищей всегда превышает его выведение. Уровень ретенции азота соответствует константе роста и скорости синтеза белка.

Свойства пищевых белков, учитываемые при нормировании питания

1. Биодоступность (всасываемость) рассчитывается по формуле:

(N поступивший – N выделенный с калом) х 100 / N поступивший.

2. Чистая утилизация (NPU, %) рассчитывается по формуле:

N пищи – (N стула + N мочи) х 100 / N пищи.

3. Коэффициент эффективности белка – прибавка в массе тела на 1 г съеденного белка в эксперименте.

4. Аминокислотный скор рассчитывается по формуле:

(Данная аминокислота в данном белке в мг х 100) / Данная аминокислота в эталонном белке в мг.

Идеальный белок – женское молоко с утилизацией 94 % и скор 100, и целое яйцо с утилизацией 87 % и скор 100 (см. табл. 14).

Таблица 14. Скорость синтеза белка в различные возрастные периоды

Таблица 15. Рекомендуемое потребление белка для детей (МЗ России, 1991 г.)

Таблица 16. Безопасные уровни потребления белка у детей раннего возраста, г/(кг в сутки))

Безопасный уровень потребления белка – количество, необходимое для удовлетворения физиологических потребностей и поддержания здоровья у детей – выше, чем у взрослых. Усвоение азота организмом зависит как от количества, так и от качества белка – содержания жизненно необходимых аминокислот. Ребенку необходимо в 6 раз больше аминокислот, чем взрослому (см. табл. 16).

Если у взрослых незаменимыми являются 8 аминокислот, то у детей в возрасте до 5 лет их 13. При чрезмерной белковой перегрузке у детей более легко, чем у взрослых, возникают аминоацидемии, что может проявиться задержкой развития, особенно нервно-психического. Дети более чувствительны к голоданию, чем взрослые, дефицит питания приводит к частым инфекциям. Длительная недостаточность белка в рационе питания детей первых 3 лет жизни может вызвать необратимые изменения, сохраняющиеся пожизненно. Определение в плазме содержания общего белка и его фракций отражает процессы его синтеза и распада (см. табл. 17).

Таблица 17. Потребность в эссенциальных аминокислотах (мг на 1 г белка)

Фракции белка также более низкие, синтез альбумина составляет 0,4 г/кг/сутки, у новорожденного процентное содержание альбумина относительно выше, чем у матери. На первом году жизни происходит снижение содержания альбумина. Динамика содержания?-глобулина аналогична таковой альбумина. В течение первого полугодия жизни особенно низкие показатели?-глобулина, что связано с его распадом, синтез собственных глобулинов происходит медленно. Соотношение глобулиновых фракций?-1 – 1, ?-2 – 2, ?– 3, ?– 4 части. При острых воспалительных заболеваниях изменения белковой формулы крови характеризуются увеличением?-глобулинов при нормальном содержании?-глобулинов и уменьшенном количестве альбуминов.

При хроническом воспалении имеет место повышение?-глобулина при нормальном или слегка повышенном содержании?-глобулина, уменьшении альбумина.

Подострое воспаление характеризуется одновременным увеличением?-, ?-глобулинов при снижении содержания альбуминов.

Появление гипергаммаглобулинемии указывает на хронический период болезни, гиперальфаглобулинемия – на обострение. У детей содержание аминокислот приближается к таковым значениям у взрослых. У новорожденных наблюдается физиологическая азотемия с 9 до 70 ммоль/л, к 5-12-му дню уровень достигает такового у взрослого (28 ммоль/л). У недоношенных детей степень азотемии тем выше, чем меньше масса ребенка.

Содержание белка в пище значительно влияет на уровень остаточного азота крови. У взрослого продукты азотистого обмена выводятся с мочой в виде нетоксической мочевины, синтез которой осуществляется в печени. У детей в возрасте до 3 месяцев выделяется 0,14 г/кг в сутки, у новорожденного значительное количество в общем азоте мочи составляет мочевая кислота. Ее избыточное содержание в моче является причиной мочекислых инфарктов почек, которые наблюдаются у 75 % новорожденных.

Дети раннего возраста выводят азот белка в виде аммиака, содержание которого больше, чем у взрослых. В этом возрасте функция печени недостаточна. В этих условиях избыточная белковая нагрузка может привести к появлению токсических метаболитов в крови.

Врожденные заболевания, в основе которых лежит нарушенный метаболизм белков

Аминоацидопатия – дефицит ферментов, участвующих в обмене белков, их более 30 форм.

Клинические проявления:

1) нервно-психические нарушения – отставание нервно-психического развития в виде олигофрении;

2) судорожный синдром, который может появиться в первые недели жизни;

3) изменения мышечного тонуса в виде гипотонии или гипертонии;

4) задержка развития речи;

5) расстройства зрения;

6) изменения кожи (нарушения пигментации кожи: альбинизм, непереносимость солнца, пеллагрическая кожа, экзема, ломкость волос;

7) желудочно-кишечные симптомы (рвота);

8) поражение печени до развития цирроза с портальной гипертензией и желудочно-кишечными кровотечениями;

9) почечная симптоматика (гематурия, протеинурия);

10) анемия, лейкопения, тромбоцитопатии, повышенная агрегация тромбоцитов.

Заболевания, в основе которых лежит нарушение синтеза белков:

1) отсутствие образования конечного продукта – гемофилия (отсутствие синтеза антигемофильного глобулина), афибриногенемия (отсутствие в крови фибриногена);

2) накопление промежуточных метаболитов – фенилкетонурия;

3) второстепенные метаболические пути, могущие становиться основными и перегруженными, а образующиеся в норме метаболиты могут накапливаться в необычно высоких количествах – гемоглобинопатии, которые клинически проявляются спонтанным или вызванным каким-либо фактором гемолиза эритроцитов, увеличением селезенки. Недостаточность сосудистого или тромбоцитарного фактора Виллебранда вызывает повышенную кровоточивость.

3. Особенности углеводного обмена у детей. Семиотика нарушений

Углеводы являются основным источником энергии: 1 г углеводов выделяет 4 ккал, они входят в состав соединительной ткани, являются структурными компонентами клеточных мембран и биологически активных веществ (ферментов, гормонов, антител).

У детей первого года жизни содержание углеводов составляет 40 %, после 1 года оно возрастает до 60 %. В первые месяцы жизни потребность в углеводах покрывается за счет материнского молока, при искусственном вскармливании ребенок также получает сахарозу или мальтозу. После введения прикорма в организм попадают полисахариды (крахмал, гликоген), что способствует выработке амилазы поджелудочной железой начиная с 4 месяцев.

Моносахариды (глюкоза, фруктоза, галактоза) подвергаются резорбции на поверхности кишечных ворсинок слизистой оболочки кишечника, причем с затратой энергии макроэргической связи АТФ. Активность лактазы наиболее низкая среди дисахараз, поэтому чаще наблюдается лактазная недостаточность. Нарушения абсорбции лактозы (молочного сахара), особенно при грудном вскармливании, клинически проявляется диареей, для которой наряду с частым жидким стулом (более 5 раз в сутки) характерны пенистые испражнения кислой реакции. Может развиться дегидратация.

В более позднем возрасте происходит репрессия лактазы, чем объясняется то, что значительное большинство взрослых не переносят натурального молока, а кисломолочные продукты усваивают хорошо. Реже наблюдается врожденная мальабсорбция сахарозы и изомальтозы, что проявляется диареей у детей, находящихся на искусственном вскармливании.

Причины дисахаридазной недостаточности:

1) следствие воздействия повреждающих факторов (таких как энтериты, недостаточность питания, лямблиоз, иммунологическая недостаточность, целиакия, непереносимость белков коровьего молока, гипоксия, желтуха);

2) незрелость щеточной каймы;

3) следствие хирургического вмешательства.

При избытке в продуктах питания глюкозы и галактозы они подвергаются превращению в печени в гликоген. Синтез гликогена начинается на 9-й неделе внутриутробного развития, его быстрое накопление происходит перед рождением, что обеспечивает энергетическую потребность новорожденного первых дней жизни, когда ребенок получает мало молока. К 3-й неделе жизни концентрация гликогена достигает таких же значений у взрослых, но запасы гликогена расходуются быстрее, чем у взрослых. Соотношение интенсивности процессов гликогенеза и гликогенолиза определяет уровень гликемии. Центральным звеном регуляции гликемии является функциональное объединение нервных центров, расположенных в отдельных отделах ЦНС, и эндокринных желез (поджелудочной, щитовидной желез, надпочечников).

В зависимости от дефицита тех или иных ферментов, участвующих в метаболизме гликогена, выделяют различные формы гликогеноза.

I тип – гепаторенальный гликогеноз, болезнь Гирке, характеризуется недостаточностью глюкозо-6-фосфатазы, самый тяжелый вариант. Клинически проявляется после рождения или в грудном возрасте. Характеризуется гепатомегалией, гипогликемическими судорогами, комой, кетозом, селезенка никогда не увеличивается. В дальнейшем происходят отставание в росте, диспропорция телосложения – живот увеличен, туловище удлинено, ноги короткие, голова большая. В перерывах между кормлениями отмечаются бледность, потливость, потря сознания в результате гипогликемии.

II тип – болезнь Помпе, в основе которой лежит недостаточность кислой мальтазы. Клинически проявляется после рождения, такие дети быстро умирают. Наблюдаются гепато– и спленомегалия, мышечная гипотония, сердечная недостаточность.

III тип – болезнь Кори, обусловленая врожденным дефицитом амило-1,6-глюкозидазы – ограниченный гликогенолиз без тяжелой гипогликемии и кетоза.

IV тип – болезнь Андерсена – результат образования гликогена неправильной структуры. Наблюдаются желтуха, гепатомегалия, формируется цирроз печени с портальной гипертензией, осложненный профузными желудочно-кишечными кровотечениями.

V тип – мышечный гликогеноз развивается в связи с дефицитом мышечной фосфорилазы, может проявиться на 3-м месяце жизни, когда обнаруживается, что дети не способны длительно сосать грудь. Наблюдается ложная гипертрофия поперечно-полосатых мышц.

VI тип – болезнь Герца – обусловлен дефицитом печеночной фосфорилазы. Клинически наблюдаются гепатомегалия, отставание в росте, течение благоприятное. Содержание глюкозы в крови – показатель углеводного обмена. В момент рождения гликемия соответствует таковой у матери, с первых часов отмечается падение сахара за счет недостатка контринсулярных гормонов и ограниченность запасов гликогена. К 6-му дню содержание гликогена повышается, но его уровень ниже, чем у взрослого.

После первого года жизни повышение сахара отмечается к 6 годам и к 12 годам, что совпадает с усилением роста детей и высокой концентрацией соматотропного гормона. Суточная доза глюкозы должна составлять от 2 до 4 г/кг массы тела. У детей отмечается более тяжелое течение сахарного диабета, чаще он проявляется в период особенно интенсивного роста. Клинически проявляется жаждой, полиурией, похуданием, повышением аппетита, обнаруживаются гипергликемия и глюкозурия, часто кетоацидоз. В основе заболевания лежит недостаточность инсулина. В сыворотке крови новорожденного и ребенка первого года жизни содержится большое количество молочной кислоты, что указывает на преобладание анаэробного гликолиза (при аэробных условиях расщепления по гликолитической цепи преобладает пировиноградная кислота).

Процесс компенсации избытка лактата заключается в увеличении активности фермента лактатдегидрогеназы, превращающей молочную кислоту в пировиноградную с последующим ее включением в цикл Кребса. У детей по сравнению с взрослыми большее значение имеет пентозный цикл – путь расщепления глюкозы, начинающийся с глюкозо-6-фосфата с более коротким и быстрым образованием большого количества энергии.

Активность ключевого фермента этого цикла – глюкозо-6-фосфатдегидрогеназы – по мере роста снижается.

Несфероцитарная гемолитическая анемия – результат нарушения пентозного цикла расщепления глюкозы. Гемолитические кризы провоцируются приемом медикаментов.

Тромбоастения – результат нарушения гликолиза в тромбоцитах, клинически проявляется повышенной кровоточивостью при нормальном количестве тромбоцитов.

Галактоземия и фруктоземия – результат дефицита ферментов, превращающих галактозу и фруктозу в глюкозу.

Первые симптомы галактоземии выявляются после начала кормления детей молоком, особенно женским, содержащим большое количество лактозы. Появляется рвота, плохо увеличивается масса тела, наблюдаются гепатоспленомегалия, желтуха, катаракта, возможны асцит и расширение вен пищевода, в моче – галактозурия. Из питания необходимо исключить лактозу.

Фруктоземия клинически проявляется аналогично галактоземии, но в более легкой степени (наблюдаются рвота, снижение аппетита, когда детям начинают давать фруктовые соки, подслащенные каши, т. е. при переходе на искусственное вскармливание. В более старшем возрасте дети не переносят мед, содержащий чистую фруктозу.

4. Особенности жирового обмена. Семиотика нарушений жирового обмена

Обмен жиров включает обмен нейтральных жиров, фосфатидов, гликолипидов, холестерина и стероидов. Жиры в организме человека быстро обновляются. Функция жиров в организме:

1) участвуют в энергетическом обмене;

2) являются составным компонентом оболочек клеток нервной ткани;

3) участвуют в синтезе гормонов надпочечников;

4) защищают организм от чрезмерной теплоотдачи;

5) участвуют в транспортировке жирорастворимых витаминов.

Особое значение имеют липиды, входящие в состав клеток, их количество составляет 2–5 % от массы тела без жира. Меньшее значение имеет жир, находящийся в подкожной клетчатке, в желтом костном мозге, брюшной полости. Жир используется в качестве пластического материала, о чем свидетельствует интенсивность его накопления в период критического роста и дифференцировки. Наименьшее количество жира наблюдается в период 6–9 лет, с началом полового созревания вновь отмечается увеличение жировых запасов.

Жиры синтезируются только в организме плода. Синтез жира происходит преимущественно в цитоплазме клеток. Синтез жирных кислот требует наличия гидрогенизированных никотинамидных ферментов, главным источником которых является пентозный цикл распада углеводов. Интенсивность образования жирных кислот будет зависеть от интенсивности пентозного цикла расщепления углеводов.

На запасной жир большое значение оказывает характер вскармливания ребенка. При грудном вскармливании масса тела детей и содержание жира у них меньше, чем при искусственном. Грудное молоко вызывает транзиторное повышение холестерина в первый месяц жизни, что служит стимулом к синтезу липопротеинлипазы. Избыточное питание детей раннего возраста стимулирует образование в жировой ткани клеток, что в дальнейшем проявится склонностью к ожирению.

Различия в химическом составе триглицеридов и жировой ткани у детей и взрослых

У новорожденных в жире содержится относительно меньше олеиновой кислоты и больше пальмитиновой, что объясняет более высокую точку плавления жиров у детей, что следует учитывать при назначении средств для парентерального применения. После рождения резко возрастает потребность в энергии, одновременно прекращается поступление веществ из материнского организма, в первые часы не покрываются даже потребности основного обмена. В организме ребенка углеводных запасов хватает на короткое время, поэтому жировые запасы начинают использоваться сразу, что отражается повышением в крови концентрации неэстерифицированных жирных кислот (НЭЖК) при одновременном снижении уровня глюкозы. Одновременно с возрастанием НЭЖК в крови новорожденных через 12–24 ч начинается увеличение концентрации кетоновых тел, причем отмечается прямая зависимость уровня НЭЖК, глицерина, кетоновых тел от калорийности пищи. Новорожденный покрывает свои энергетические затраты за счет обмена углеводов.

По мере увеличения количества молока, которое получает ребенок, повышения его калорийности до 40 ккал/кг падает концентрация НЭЖК. Концентрация липидов, холестерина, фосфолипидов, липопротеинов у новорожденных низкая, но через 1–2 недели она возрастает, что связано с их поступлением из пищи. Принятые с пищей жиры подвергаются расщеплению и резорбции под влиянием липолитических ферментов желудочно-кишечного тракта и желчных кислот в тонкой кишке. Из-за нерастворимости жиров в крови их транспорт осуществляется в виде липопротеинов.

Превращение хиломикронов в липопротеины происходит под воздействием липопротеинлипазы, кофактором которой является гепарин. Под влиянием липопротеинлипазы происходит отщепление свободных жирных кислот из триглицеридов, которые связываются с альбумином и легко усваиваются. У новорожденных количество?-протеинов значительно больше, b-протеинов – меньше, к 4-му месяцу приближается к значениям у взрослых. В первые часы и дни жизни снижена реэстерификация жирных кислот в стенке кишечника. У детей первых дней жизни нередко наблюдается стеаторея, постепенно в фекалиях снижается количество свободных жирных кислот, что отражает лучшее всасывание жира в кишечнике. У недоношенных новорожденных активность липазы составляет всего 60–70 % активности, обнаруживаемой у детей старше 1 года, у доношенных новорожденных она значительно больше.

Всасывание жира определяется не только активностью липазы, но и желчными кислотами. У недоношенных новорожденных детей выделение желчных кислот печенью составляет лишь 15 % того количества, которое образуется в период полного развития ее функций у детей 2 лет. У доношенных новорожденных эта величина повышается до 40 %. У доношенных детей всасывание жиров из грудного молока осуществляется на 90–95 %, у недоношенных – на 85 %.

При искусственном вскармливании эти показатели снижаются на 15–20 %. Расщепление триглицеридов до глицерина и жирных кислот происходит под влиянием тканевых липаз.

Глицерин фосфорилируется и включается в гликолитическую цепь.

Жирные кислоты подвергаются окислению в митохондриях клеток и подвергаются обмену в цикле Кноопа-Линена, сущность которого состоит в том, что при каждом обороте цикла образуется одна молекула ацетилкоэнзима А. Но организм предпочитает использовать в качестве источника энергии углеводы из-за больших возможностей аутокаталитической регуляции прироста энергии в цикле Кребса. При катаболизме жирных кислот происходит образование промежуточных продуктов – кетоновых тел (b-оксимасляной кислоты, ацетоуксусной кислоты, ацетона). Кетогенность диеты определяется формулой:

(Жиры + 40 % белков) / (углеводы + 60 % белков).

Продукты обладают кетогенным свойством, если это соотношение превышает 2. Склонность к кетозу особенно проявляется в возрасте 2-10 лет. Новорожденные дети более устойчивы к развитию кетоза. Клинически кетоз проявляется ацетонемической рвотой, которая возникает внезапно и может продолжаться несколько дней, характерен запах ацетона изо рта, в моче определяется ацетон. Если кетоацидоз осложняет сахарный диабет, то обнаруживаются гипергликемия и глюкозурия. Содержание общих липидов в крови увеличивается с возрастом, только в течение первого года жизни оно возрастает в 3 раза. У новорожденных относительно высокое содержание нейтральных липидов (лецитина).

Нарушения обмена липидов могут происходить на различных этапах метаболизма

1. Синдром Шелдона развивается при отсутствии панкреатической липазы. Клинически проявляется целиакоподобным синдромом со значительной стеатореей, масса тела увеличивается медленно, встречается относительно редко. Обнаруживаются эритроциты с измененной структурой оболочки и стромы.

2. Синдром Золлингера-Эллисона наблюдается при гиперсекреции соляной кислоты, которая инактивирует панкреатическую липазу.

3. Абеталипопротеинемия – нарушение транспорта жира. Клиника сходна с целиакией (наблюдаются диарея, гипотрофия), в крови содержание жира низкое.

4. Гиперлипопротеинемии.

I тип является результатом дефицита липопротеинлипазы, в сыворотке крови содержится большое количество хиломикронов, она мутная, образуются ксантомы, больные часто страдают панкреатитом с приступами острых болей в животе; ретинопатией.

II тип характеризуется повышением в крови b-липопротеи-нов низкой кислотности со значительным повышением уровня холестерина и нормальным или слегка повышенным содержанием триглицеридов. Клинически определяются ксантомы на ладонях, ягодицах, периорбитально, рано развивается атеросклероз.

III тип – повышение флотирующих b-липопротеинов, высокое содержание холестерина, умеренное повышение триглицеридов. Обнаруживаются ксантомы.

IV тип – повышение пре-b-липопротеинов с увеличением триглицеридов, нормальным или слегка повышенным содержанием холестерина, хиломикроны не увеличены.

V тип отличается повышением липопротеинов низкой плотности. Клинически проявляется болями в животе, хроническим рецидивирующим панкреатитом, гепатомегалией. Гиперлипопротеинемии генетически обусловлены, относятся к патологии переноса липидов.

5. Внутриклеточные липоидозы. У детей наиболее часто встречаются болезнь Нимана-Пика (отложение в ретикулоэндотелиальной системе сфингомиелина) и болезнь Гоше (гексозоцереброзидов). Главное проявление этих болезней – спленомегалия.

5. Особенности водно-солевого обмена и синдромы его нарушения

Ткани и органы ребенка содержат значительно больше воды, чем у взрослого, по мере роста ребенка содержание воды уменьшается. Общее количество воды на третьем месяце внутриутробного развития составляет 75,5 % от массы тела. К рождению у доношенного новорожденного – 95,4 %. После рождения организм постепенно теряет воду, у детей первых 5 лет вода составляет 70 % от массы тела, у взрослого – 60–65 %. Наиболее интенсивно новорожденный теряет воду в период физиологической убыли массы тела за счет испарения при дыхании, с поверхности кожи, экскреции с мочой и меконием, причем потеря 8,7 % воды в этот период не сопровождается клиническим обезвоживанием. Хотя общее количество воды на 1 кг массы тела у детей больше, чем у взрослого, на единицу поверхности тела содержание жидкости у детей значительно меньше. На содержание воды в организме влияют характер питания и содержание жира в тканях, при преобладании углеводов в питании увеличивается гидрофильность тканей, жировая ткань бедна водой (содержит не более 22 %). Химический состав внутриклеточной жидкости и внеклеточной (плазмы крови, интерстициальной жидкости) различен. Интерстициальная жидкость отделена от крови полупроницаемой мембраной, ограничивающей выход белка за пределы сосудистого русла. Каждые 20 мин между кровью и интерстициальной жидкостью проходит количество воды, равное массе тела. Объем циркулирующей плазмы обменивается в течение 1 мин. Объем плазмы с возрастом относительно уменьшается. С возрастом не только уменьшается общее количество воды, но происходит и изменение в содержании внутри– и внеклеточной жидкости. Водный обмен у детей протекает более интенсивно, чем у взрослых. У детей раннего возраста отмечается большая проницаемость клеточных мембран, фиксация жидкости в клетке и межклеточных структурах более слабая. Особенно это касается межуточной ткани. У ребенка внеклеточная вода более подвижна. Высокая проницаемость клеточных мембран определяет равномерное распределение в организме не только жидкости, но и введенных парентерально веществ.

Потребность в воде у детей значительно больше, чем у взрослых.

Таблица 18. Общий баланс воды в физиологическом состоянии ребенка

Состав минеральных солей и их концентрация определяют осмотическое давление жидкости, важнейшие катионы – одновалентные: натрий, калий; двухвалентные: кальций, магний. Им соответствуют анионы хлора, карбоната, ортофосфата, сульфата и др. В целом имеется некоторый избыток оснований, так что рН = 7,4. Электролиты оказывают основное влияние на распределение жидкостей. Такие осмотически активные вещества, как глюкоза и мочевина, в распределении жидкости в организме имеют небольшое значение, так как свободно проникают через сосудистую и клеточную мембраны (см. табл. 19).

Таблица 19. Распределение электролитов в организме

Метаболическое благополучие в организме ребенка определяет адекватность его развития и созревания. В сформировавшемся, взрослом организме метаболизм находится в состоянии относительно устойчивого равновесия с внешней средой.

У детей в процессе роста и развития происходят значительные изменения морфологических характеристик тканей, их химического состава и метаболизма, поэтому детский организм нельзя рассматривать как уменьшенную копию взрослого.

Целью настоящего обзора явилось обобщить и систематизировать данные литературы о биохимических особенностях детского организма, что может оказаться полезным для врачей-педиатров в понимании некоторых закономерностей патогенеза и отличительных черт симптоматики целого ряда заболеваний детского возраста.

Наблюдаемые в детском возрасте качественные и количественные изменения обменных процессов происходят в соответствии с генетической программой развития и потребностями организма ребенка. В связи с этим наблюдается целый ряд особенностей, отличающих обмен веществ ребенка от взрослого.

1. Для детей характерна высокая напряженность отдельных сторон метаболизма . Это в первую очередь касается бурно протекающих анаболических процессов, которые включают в себя разнообразные виды синтезов и высокой активности энергетического обмена, обеспечивающей биосинтетические реакции энергией АТФ.

От момента оплодотворения яйцеклетки до момента рождения доношенного новорожденного масса увеличивается в 650 миллионов раз, а длина тела плода за весь внутриутробный период возрастает приблизительно в 5 тысяч раз. Это свидетельствует об интенсивно протекающих процессах обмена веществ, при которых анаболические реакции преобладают над катаболическими; у взрослых скорости этих двух фаз метаболизма выравниваются.

В связи с приростом массы тела и развитием органов в организме возникают специфические потребности в пластическом материале, что и обусловливает высокую интенсивность анаболизма. У детей, особенно в ранние возрастные периоды, с высокой скоростью протекает синтез белков, расходующихся на обеспечение процессов роста, обновления и дифференцировки тканей; постоянно увеличивается синтез белков, выполняющих специфические функции в организме (например, транспорт различных соединений). Активно происходит синтез нуклеиновых кислот и обмен азотистых оснований. В частности, мочевая кислота, характеризующая состояние пуринового обмена, образуется у детей в 220 раз быстрее, чем у взрослых. Интенсивно осуществляется потребление клетками и обмен аминокислот, что вызвано их ускоренным использованием в метаболизме.

2. Качественные перестройки ряда метаболических путей в зависимости от возраста ребенка . В процессе роста детей происходит физическое и нервно-психическое развитие организма, становление функциональных систем и метаболизма.

Деятельность любого органа складывается из совокупности метаболических процессов, происходящих в клетке, причем каждому конкретному периоду жизни ребенка свойственны свои особенности обмена веществ. Важно подчеркнуть, что на каждом этапе развития ребенка имеется то состояние метаболизма, которое обеспечивает оптимальное для роста соотношение пластических и биоэнергетических процессов и обладает наибольшей целесообразностью.

Переход на внеутробное существование: метаболическая и функциональная адаптация новорожденного. Активный метаболизм липидных компонентов. В первый месяц жизни в тканях активен анаэробный гликолиз, это обеспечивает повышенную устойчивость организма к гипоксии, но утилизация глюкозы сопровождается низким энергетическим выходом.

Интенсивный синтез структурных белков для роста, активный энергетический обмен, возрастание роли аэробного гликолиза, активный синтез функциональных белков, переход на независимое от материнского организма питание, развитие функциональных систем и иммунитета.

Завершение процессов миелинизации нервной системы.

Относительная стабилизация обмена веществ и энергии.

3. Увеличение энергетических резервов организма в процессе роста (депо гликогена и жира); относительное уменьшение объема внеклеточной жидкости за счет увеличения клеточной массы .

4. Неустойчивость (лабильность) обменных процессов . Она обусловлена морфологической незрелостью и функциональной неполноценностью регуляторных механизмов (ЦНС, эндокринные железы), а также связана с незрелостью целого ряда ферментных систем ребенка. В частности, у детей раннего возраста имеется недостаточная активность ферментов, осуществляющих гидролитическое расщепление пищевых веществ в желудочно-кишечном тракте; ферментных реакций, связанных с тканевым дыханием; несовершенство системы глюкуронилтрансферазы, участвующей в конъюгации билирубина. Определенную роль в неустойчивости метаболизма ребенка играет также лабильность барьерных функций (состояние гистогематических барьеров), заключающаяся в повышенной проницаемости мембран, призванных регулировать относительное постоянство состава и свойств клеток. Все перечисленные обстоятельства приводят к несовершенству биохимической адаптации ребенка, снижают резервные возможности организма и делают его легко уязвимым, высоко чувствительным к действию различных неблагоприятных факторов (гипоксия , неправильное питание, инфекции и т.д.). Кроме того, лабильность системы гомеостаза и несовершенство регуляторных механизмов обусловливают возникновение своеобразных черт в клинике того или иного заболевания у детей по сравнению с клиническим течением той же патологии у взрослых. Мощнейшим фактором, изменяющим метаболизм ребенка, является характер питания, качественный и количественный состав потребляемой пищи. При нерационально составленной диете чрезвычайно легко возникает дефицит того или иного витамина либо другого незаменимого фактора питания.

5. Неустойчивость обменных процессов в детском возрасте проявляется лабильностью биохимических показателей (колебания глюкозы крови, появление сахара в моче, легкость возникновения протеинурии, накопление кетоновых тел и т.д.). Для здоровых детей, особенно в раннем возрасте, характерно влияние приема пищи на целый ряд биохимических показателей; кроме того, суточные колебания биохимических констант у них имеют значительно больший размах, чем у взрослых. Патологические изменения в обмене веществ возникают у ребенка с особой легкостью, что незамедлительно отражается на биохимических показателях. Например, кетоз у детей легко развивается вследствие самых разнообразных причин (кратковременный недостаток углеводов в пище, рвота, перерыв в кормлении, повышенная двигательная активность и др.). При нарушении обменных процессов у ребенка в связи с развитием патологических состояний биохимические показатели также характеризуются большей амплитудой, чем при аналогичных заболеваниях у взрослых, что иногда затрудняет правильную трактовку лабораторных анализов у детей.

Большинство биохимических показателей зависит от возраста ребенка. Яркий тому пример –возрастная вариабельность уровня глюкозы в крови. Все вышесказанное указывает на необходимость учета особенностей обмена веществ детского организма при оценке метаболического статуса, диагностике и лечении заболеваний у ребенка.

Особенности энергетического обмена у детей

В функционировании различных органов и систем ведущая роль принадлежит энергетическому обмену. Все процессы, лежащие в основе жизнедеятельности организма, требуют энергетических затрат. Каждый возрастной период имеет свои особенности энергетического метаболизма.

Внутриутробный период

В период эмбриогенеза с высокой скоростью происходит формирование тканей, их рост и дифференцировка, что требует образования значительного количества пластического материала, синтеза функционально активных белков — ферментов.

Исключительная напряженность процессов роста обусловливает существование интенсивного энергетического метаболизма еще до рождения ребенка. Плацентарное кровообращение, функционирующее во внутриутробном периоде, характеризуется относительно невысоким поступлением кислорода в организм плода. Вследствие этого в тканях развивающегося эмбриона и плода достаточно активно протекает анаэробный гликолиз. Этот метаболический путь по сравнению с аэробным гликолизом дает меньше энергии, глюкоза расходуется неэкономично, и высокий уровень энергообразования обеспечивается повышенным потреблением глюкозы трансплацентарно из крови матери.

Метаболические реакции пластического и энергетического обмена у плода направлены на подготовку к его существованию вне организма матери. Родовой акт является сильнейшим стрессом для рождающегося ребенка. Эффективность приспособления плода к этому стрессу непосредственно сопряжена с накоплением в организме субстратов, используемых для получения энергии. У плода в тканях (печень, мышечная ткань, надпочечники и другие) интенсивно накапливается гликоген, в основном за счет глюкозы, поступающей из крови матери. Это раннее накопление гликогена в печени дает возможность выжить недоношенным детям. В организме плода также образуются жиры, источником которых являются кетовые тела, переходящие свободно через плацентарный барьер. В последние 3 месяца внутриутробной жизни в теле плода депонируется 600-700 г жира. Наряду с обычной жировой тканью в организме плода образуется бурая жировая ткань, которая, сыграв свою роль непосредственно после рождения, постепенно исчезает. Значение этой ткани состоит в процессах терморегуляции новорожденных.

Внеутробный период

Попадание ребенка во внеутробную среду обитания сочетается с переходом от плацентарного к легочному газообмену, изменением питания, воздействием на новорожденного более низкой, чем в организме матери, окружающей температуры.

Этот температурный перепад может составлять 15-18°. Он в значительной степени влияет на обмен веществ новорожденного, а также вызывает ответную реакцию со стороны мышечной системы ребенка — возникновение мышечного тонуса, обеспечивающего высокий уровень теплорегуляции. Поэтому в первые часы жизни новорожденного, когда еще сохраняются особенности метаболизма внутриутробного периода, но условия внешней среды уже совершенно иные, отмечается существенное напряжение всех систем организма, что находит свое отражение в отличительных чертах энергетического обмена ребенка.

Общими закономерностями энергетических процессов у детей являются следующие .

1) Высокая потребность тканей в энергии . В расчете на 1 кг массы тела у ребенка первого и второго полугодия жизни расходуется соответственно в 3 и в 2,4 раза больше АТФ, чем у взрослого; особенно высокий уровень энергозатрат характерен для организма новорожденного. Наибольшее количество макроэргов используется на активно протекающие процессы анаболизма, связанные с интенсивным ростом организма и дифференцировкой тканей. Значительная часть энергии расходуется на функционирование системы поддержания температурного гомеостаза и работу двигательного аппарата.

2) Своеобразие теплообмена у детей . Постоянство температуры тела (температурный гомеостаз) зависит от равновесия между потерями тепла и его продукцией. Для поддержания температурного гомеостаза организм ребенка даже в покое тратит много энергии, и соответственно, освобождается большое количество тепла. Новорожденный имеет ограниченную способность регулировать теплоотдачу, которая при расчете на единицу массы тела может в 4 раза превышать теплоотдачу у взрослого. Главной причиной этого является большая, чем у взрослого, поверхность тела по отношению к его массе, а также тонкий слой подкожного жира, выполняющего роль теплоизоляции. Вместе с тем новорожденный имеет значительную способность повышать теплопродукцию, поскольку система теплорегуляции у детей зависит от температуры окружающей среды.

При охлаждении тела ребенка усиление теплообразования происходит в результате сократительной работы мышц (холодовая мышечная дрожь и холодовой мышечный тонус). Такая мышечная деятельность является мощным источником тепла и называется дрожательный термогенез.

Кроме того, у новорожденного и ребенка раннего возраста (до 1 года) в процессах теплопродукции особое значение имеет так называемый недрожательный, или химический, термогенез, связанный с непосредственным окислением жира в бурой жировой ткани. У новорожденных эта ткань составляет 2 % от массы тела. Под влиянием холода в бурой жировой ткани выделяется норадреналин, являющийся в ней главным стимулятором липолиза. Следовательно, бурая жировая ткань служит не только источником неэтерифицированных жирных кислот, но и местом их сгорания с образованием тепловой энергии, т.е.является важным органом теплопродукции.

3) Высокая чувствительность энергетического обмена к регуляторным воздействиям . Функционально незрелая система терморегуляции у детей раннего возраста отличается лабильностью и весьма чувствительна к регуляторным воздействиям, например, к влиянию веществ, разобщающих цепь тканевого дыхания и окислительное фосфорилирование (тироксин, неэтерифицированные жирные кислоты, токсины микроорганизмов). Под действием разобщителей значительная часть энергии дыхательной цепи не запасается в виде АТФ, а рассеивается в виде тепла. В связи с этим легко может возникать несоответствие между теплоотдачей и теплопродукцией, что проявляется в повышении температуры тела и перегревании организма. Термолабильность в организме детей сохраняется до 2 лет.

4) Большая интенсивность энергообразования . Для обеспечения значительных энергетических потребностей ребенка необходимы относительно большие энергетические резервы организма. Следствием повышенного расходования АТФ является высокая интенсивность биоэнергетических процессов, наиболее выраженная у детей раннего возраста (особенно у новорожденных); в дальнейшем она постепенно снижается.

5) Переключение путей наработки энергии с эмбрионального типа на тип, характерный для взрослого человека . На протяжении первого года жизни ребенка происходят качественные изменения в характере энергообеспечения тканей: снижается удельный вес анаэробного гликолиза и нарастает интенсивность процессов окислительного фосфорилирования. У новорожденных в тканях еще сохраняются особенности метаболизма внутриутробного периода, поэтому преобладают процессы анаэробного расщепления углеводов, что обеспечивает высокую устойчивость организма к гипоксии, но продуцирует небольшое количество макроэргов. В первые три месяца после рождения интенсивность анаэробного гликолиза у детей наиболее высока и остается на протяжении первого года жизни на 30-35 % выше, чем у взрослых.

К 3-4-месячному возрасту у ребенка наблюдается перестройка внутриклеточного метаболизма:

параллельно снижению анаэробного гликолиза нарастает интенсивность окислительноосстановительных процессов, увеличивается потребление кислорода, стабилизируется преобладание аэробного гликолиза над анаэробным, энергетические потребности растущего организма обеспечиваются высоким уровнем окислительного фосфорилирования. Эта общая закономерность изменения метаболизма в сторону аэробного пути наработки энергии дает возможность тканям более экономично использовать глюкозу.

6) Изменение субстратного обеспечения энергетических процессов . Использование субстратов в качестве источников энергии изменяется на протяжении первых месяцев жизни ребенка. Поскольку у новорожденных превалируют процессы анаэробного гликолиза, которые дают относительно мало энергии, а уровень энергозатрат на единицу массы тела очень высокий, то для обеспечения энергией процессов жизнедеятельности в первые дни после рождения ребенок тратит запасы энергетических веществ, накопленные «впрок» во внутриутробном периоде.

От наличия этих запасов зависит эффективность адаптации ребенка к внеутробному существованию.

В первые часы жизни новорожденный использует в качестве эндогенного источника энергии гликоген. Однако при рождении ребенок обладает недостаточными запасами гликогена. В момент рождения содержание сахара в крови ребенка соответствует концентрации его у матери. Гормоны стресса, выделяющиеся во время родов, быстро «опустошают» запасы гликогена в печени. Через 2-3 часа после рождения содержание глюкозы в крови у новорожденных понижается до гипогликемических величин. В таких условиях главным источником энергии становятся неэтерифицированные жирные кислоты. Охлаждение тела ребенка, наступающее после рождения в связи с переходом из материнского организма в новую среду обитания, обеспечивает выброс гормонов

(тироксина, в бурой жировой ткани – норадреналина, при развитии гипогликемии – глюкагона), которые активируют расщепление триглицеридов с образованием жирных кислот. В крови повышается концентрация неэтерифицированных жирных кислот, которые потом используются на энергетические цели.

Поскольку у ребенка в первые сутки после рождения белки как источник энергии практически не используются, а углеводов крайне мало, то главным эндогенным источником энергии для новорожденных являются неэтерифицированные жирные кислоты. Наиболее интенсивно процесс липолиза протекает на 3 — 4 день после рождения, что соответствует периоду максимальной потери массы у новорожденных. Все ткани, кроме мозга и эритроцитов, потребляют неэтерифицированные жирные кислоты.

Одновременно с неэтерифицированными жирными кислотами нарастает использование тканями кетоновых тел, которые также служат энергетическим ресурсом. Со второй недели жизни уровень глюкозы в крови новорожденных постепенно повышается, а содержание неэтерифицированных жирных кислот снижается, однако до 3-месячного возраста остается выше, чем у старших детей.

В таких условиях, когда из-за гипогликемии ткани не могут эффективно использовать глюкозу крови, а интенсивно протекающий липолиз истощает запасы энергетических ресурсов в теле новорожденного, организм ребенка находится в течение первой недели жизни на пределе энергетического равновесия. Поэтому, с биохимической точки зрения, покрытие энергетических затрат в этот возрастной период должно осуществляться путем правильной организации питания детей.

Очень важно производить максимально ранее первое кормление ребенка, чтобы избежать усиления катаболических процессов в организме. Существенным моментом является также регулярность кормления, поскольку пропуск даже одного приема пищи неизбежно мобилизует жировые запасы для ликвидации резко выраженного дефицита энергии. Голодание ребенка в раннем возрасте считается недопустимым, так как оно сопровождается глубокими метаболическими изменениями в организме, притом тем более тяжелыми, чем моложе ребенок.

Экзогенными источниками энергии у детей являются углеводы и жиры (как и у взрослых), в меньшей степени белки. У ребенка раннего возраста за счет углеводов покрывается приблизительно 40 % энергетической потребности организма, за счет жиров — около 50 %, а в первые дни жизни жиры составляют 80-90 % энергетической ценности рациона. По мере роста ребенка соотношение меняется в пользу углеводов.

Особенности обмена веществ у детей:

  • · Во время роста ребенка анаболические процессы превышают катаболические. Чем быстрее растет ребенок, тем более выражено это преобладание;
  • · в зависимости от периода детского возраста изменяется соотношение между
  • · увеличением массы тела и дифференцированием структур. Так, в грудном периоде наиболее выражено повышение массы тела. В преддошкольном - на первом месте находится процесс формирования структур. В школьном возрасте - более завершенное дифференцирование тканей;
  • · только в детском возрасте происходит необходимое созревание обменных процессов и окончательное формирование органов.

Энергия, которая образуется в организме человека в результате обмена веществ в течение жизни, в основном, используется на основной обмен, пластический обмен, переваривание и всасывание пищевых продуктов (специфически--динамическое действие пищи), деятельность мышечной системы.

Основной обмен - это минимальное количество энергии, которое необходимо для поддержания жизни организма в состоянии полного покоя; устанавливается у ребенка, который не спит и находится в состоянии полного мышечного и эмоционального покоя, при комфортной температуре - 18-20°С, утром, натощак. Обмен измеряется количеством килокалорий (ккал), которые выделяются при указанных условиях, на 1 кг массы тела или на 1 м2 поверхности тела за 1 час или за 1 сутки (по системе СИ -- в кДж; 1 ккал = 4,184 кДж).

У новорожденных наблюдается повышение основного обмена, который к 1,5 годам постепенно уменьшается. Благодаря высокому пластическому обмену в этом возрасте основной обмен ниже, чем у взрослого. У взрослого он составляет 60 % от общей энергии, у ребенка первых 3-х месяцев жизни - 36 %, т.е. в 2 раза меньше.

Пластический обмен - расход энергии на рост ребенка. Известно, что для накопления 1г массы тела расходуется приблизительно 29,3 кДж (7 ккал). Наиболее интенсивный рост отмечается во внутриутробном периоде развития. Темп роста остается достаточно высоким в первые месяцы жизни, что подтверждается значительным увеличением массы тела Так, у детей первых 3-х месяцев доля пластического обмена составляет 46 %, в 9 месяцев - 13 %, в 10-12 -6 %. С 4-х лет, особенно в препубертатный период, наблюдается увеличение интенсивности роста и, соответственно, пластического обмена.

В среднем за 20 лет жизни масса тела человека увеличивается приблизительно в 20 раз.

Определенное количество энергии расходуется на деятельность мышечной системы . Расход энергии на мышечную работу с возрастом увеличивается и у взрослых составляет 1/3 от суточного расхода энергии. Доля расхода энергии зависит от воспитания ребенка, школьной нагрузки и др.

Доля энергии, расходуемая на способность организма принимать, переваривать и усваивать пищу (специфически-динамическое действие пищи), изменяется в зависимости от характера питания. Она больше при богатой белками пище, менше -- при приеме жиров и углеводов. У детей, особенно раннего возраста, специфически-динамическое действие пищи выражено слабее (0,5% суточного расхода энергии), чем у взрослых (10%).

ОСОБЕННОСТИ ЭНЕРГЕТИЧЕСКОГООБМЕНА В РАЗЛИЧНЫЕ ПЕРИОДЫ ДЕТСТВА

Особенности энергетического обмена у детей обусловлены его интенсивным ростом, высоким уровнем биосинтетической деятельности, а также функциональной незрелостью регуляторных систем.

В процессе роста детского организма обмен веществ и энергии характеризуєтся значительными количественными и качественными изменениями:

  • · Внутриутробно происходит максимальное дифференцирование тканей, формирование органов и систем. В этот период масса тела увеличивается в наибольшей мере, что сопровождается, соответственно, наибольшим расходом энергии на пластический обмен (на формирование 1 г ткани требуется 7 ккал);
  • · перинатальный период характеризуется активным процессом адаптации обмена веществ к новым условиям существования. Особенностью первых дней жизни ребенка является относительно низкий основной обмен, что может быть обусловлено снижением функции щитовидной железы в этот период. К концу неонатального периода основной обмен увеличивается. Пластический обмен в данном возрасте продолжает преобладать в расходе энергии над другими видами ее затрат. В этом возрасте включается обмен на переваривание и всасывание пищи, а также увеличивается мышечный обмен;
  • · грудной период характеризуется наиболее интенсивным обменом веществ и энергии в связи с ростом ребенка, развитием функциональных систем, постепенной отменой грудного вскармливания, стабилизацией иммунитета и др. Основной обмен продолжает расти и уже во втором квартале первого года жизни превышает пластический обмен в 1,5 раза. В конце грудного периода основной обмен достигает максимума и превышает пластический более, чем в 8 раз.

Расход энергии на процессы переваривания и всасывания пищи обусловлен потребностями ребенка первого года жизни в белках, жирах и углеводах.. Для переваривания и усвоения белков энергии необходимо больше, чем для жиров и углеводов. Соответственно, чем больше белков входит в состав пищи ребенка, тем больше энергии необходимо для ее переваривания и усвоения.

  • · преддошкольный и дошкольный возраст: до двух лет жизни сохраняется стабилизация процессов основного обмена, с 3-го года происходит постепенное снижение его интенсивности; дошкольный возраст характеризуется увеличением пластического обмена;
  • · в период полового созревания под влиянием половых гормонов происходят значительные изменения процессов метаболизма. Процессы основного обмена в 16-17 лет соответствуют уровню взрослого человека.

В организме наряду с расщеплением веществ происходит не только высвобождение энергии, но и особый вид ее накопления .

Процессы обмена веществ и энергии особенно интенсивно идут во время роста и развития детей и подростков, что является одной из характерных черт растущего организма. На этом этапе онтогенеза пластические процессы значительно преобладают над процессами разрушения, и только у взрослого человека между этими процессами обмена веществ и энергии устанавливается динамическое равновесие. Таким образом, в детстве преобладают процессы роста и развития или ассимиляции, в старости – процессы диссимиляции. Эта закономерность может нарушаться в результате различных заболеваний и действия других экстремальных факторов окружающей среды.

в состав клеток входит около 70 химических элементов, образующих в организме два основных типа химических соединений: органические и неорганические вещества. В теле здорового взрослого человека средней массы (70 кг) содержится примерно: воды – 40-45; белков– 15-17; жиров – 7-10; минеральных солей – 2,5-3; углеводов – 0,5-0,8. Непрерывные процессы синтеза и распада, происходящие в организме, требуют регулярного поступления материала, необходимого для замещения уже отживших частиц организма. Этот «строительный материал» поступает в организм с пищей. Количество пищи, которую съедает человек за свою жизнь, во много раз превышает его собственную массу. Все это говорит о высокой скорости процессов обмена веществ в организме человека.

Обмен белков. Белки составляют около 25% от общей массы тела. Это самая сложная его составная часть. Белки представляют собой полимерные соединения, состоящие из аминокислот. Белковый набор каждого человека является строго уникальным, специфичным. В организме белок пищи под действием пищеварительных соков расщепляется на свои простые составные части – пептиды и аминокислоты, которые затем всасываются в кишечнике и поступают в кровь. Из 20 аминокислот только 8 являются незаменимыми для человека. К ним относятся: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин. Для растущего организма необходим также гистидин.

Отсутствие в пище любой из незаменимых аминокислот вызывает серьезные нарушения жизнедеятельности организма, особенно растущего. Белковое голодание приводит к задержке, а затем и к полному прекращению роста и физического развития. Ребенок становится вялым, наблюдается резкое похудание, обильные отеки, поносы, воспаление кожных покровов, малокровие, снижение сопротивляемости организма к инфекционным заболеваниям и т. д. Это объясняется тем, что белок является основным пластическим материалом организма, из которого образуются различные клеточные структуры. Кроме того, белки входят в состав ферментов, гормонов, нуклеопротеидов, образуют гемоглобин и антитела крови.

Если работа не связана с интенсивными физическими нагрузками, организм человека в среднем нуждается в получении в сутки примерно 1,1-1,3 г белка на 1 кг массы тела. С увеличением физических нагрузок возрастают и потребности организма в белке. Для растущего организма потребности в белке значительно выше. На первом году постнатального развития ребенок должен получать более 4 г белка на 1 кг массы тела, в 2-3 года – 4 г, в 3-5 лет – 3,8 г и т. д.

Обмен жиров и углеводов. Эти органические вещества имеют более простое строение, они состоят из трех химических элементов: углерода, кислорода и водорода. Одинаковый химический состав жиров и углеводов дает возможность организму при излишке углеводов строить из них жиры, и, наоборот, при необходимости из жиров в организме легко образуются углеводы.

Общее количество жира в организме человека в среднем составляет около 10-20%, а углеводов – 1%. Большая часть жиров находится в жировой ткани и составляет резервный энергетический запас. Меньшая часть жиров идет на построение новых мембранных структур клеток и на замену старых. Некоторые клетки организма способны накапливать жир в огромных количествах, выполняя в организме роль тепловой и механической изоляции.

В рационе здорового взрослого человека жиры должны составлять около 30% общей калорийности пищи, т. е. 80-100 г в день. Необходимо использовать в пищу жиры и животного, и растительного происхождения, в соотношении 2:1, так как некоторые составные компоненты растительных жиров не могут синтезироваться в организме. Это так называемые непредельные жирные кислоты: линолевая, линоленовая и арахидоновая. Недостаточное поступление этих жирных кислот в организм человека приводит к нарушению обмена веществ и развитию атеросклеротических процессов в сердечно-сосудистой системе.

Потребности детей и подростков в жирах имеют свои возрастные особенности. Так, до 1,5 года потребности в растительных жирах нет, а общая потребность составляет 50 г в день, с 2 до 10 лет потребность в жирах увеличивается 80 г в день, а в растительных – до 15 г, в период полового созревания потребность в жирах у юношей составляет 110 г в сутки, а у девушек – 90 г, причем потребность в растительных жирах у обоих полов одинакова – 20 г в сутки.

Углеводы в организме расщепляются до глюкозы, фруктозы, галактозы и т. д. и затем всасываются в кровь. Содержание глюкозы в крови взрослого человека постоянно и равно в среднем 0,1%. При повышении количества сахара в крови до 0,11-0,12% глюкоза поступает из крови в печень и мышечные ткани, где откладывается в запас в виде животного крахмала – гликогена. При дальнейшем увеличении содержания сахара в крови до 0,17% в его выведение из организма включаются почки, в моче появляется сахар. Это явление называют глюкозурией .

Организм использует углеводы в основном как энергетический материал. В обычных условиях в среднем для взрослого мужчины, занятого умственным или легким физическим трудом, в день требуется 400-500 г углеводов. Потребности в углеводах детей и подростков значительно меньше, особенно в первые годы жизни. Так, до 1 года потребность в углеводах составляет 110 г в сутки, от 1,5 до 2 лет – 190 г, в 5-6 лет – 250 г, в 11-13 лет – 380 г и у юношей – 420 г, а у девушек – 370 г. В детском организме наблюдается более полноценное и быстрое усвоение углеводов и большая устойчивость к избытку сахара в крови.

Водно-солевой обмен. Для жизнедеятельности организма вода играет намного большую роль, чем остальные составные части пищи. Дело в том, что вода в организме человека является одновременно строительным материалом, катализатором всех обменных процессов и терморегулятором тела. Общее количество воды в организме зависит от возраста, пола и массы. В среднем в организме мужчины содержится свыше 60% воды, в организме женщины – 50%.

Содержание воды в детском организме значительно выше, особенно на первых этапах развития. По данным эмбриологов, содержание воды в теле 4-месячного плода достигает 90%, а у 7-месячного – 84%. В организме новорожденного объем воды составляет от 70 до 80%. В постнатальном онтогенезе содержание воды быстро падает. Так, у ребенка 8 мес. содержание воды составляет 60%, у 4,5летнего ребенка – 58%, у мальчиков 13 лет – 59%, а у девочек этого же возраста – 56%. Большее содержание воды в организме детей, очевидно, связано с большей интенсивностью обменных реакций, связанных с их быстрым ростом и развитием. Общая потребность в воде детей и подростков возрастает по мере роста организма. Если годовалому ребенку необходимо в день примерно 800 мл воды, то в 4 года – 1000 мл, в 7-10 лет – 1350 мл, а в 11-14 лет – 1500 мл.

Минеральный обмен. Роль микроэлементов сводится к тому, что они являются тонкими регуляторами обменных процессов. Соединяясь с белками, многие микроэлементы служат материалом для построения ферментов, гормонов и витаминов.

Потребности взрослого и ребенка в минеральных веществах значительно отличаются, недостаток минеральных веществ в пище ребенка более быстро приводит к различным нарушениям обменных реакций и соответственно к нарушению роста и развития организма. Так, норма потребления кальция в организме годовалого ребенка составляет 1000 мг в день, фосфора – 1500 мг. В возрасте от 7 до 10 лет потребность в микроэлементах увеличивается, кальция требуется 1200 мг в день, фосфора – 2000 мг. К концу периода полового созревания потребность в микроэлементах немного снижается.

Витамины. Они требуются для нашего организма в ничтожно малых количествах, но их отсутствие приводит организм к гибели, а недостаток в питании или нарушение процессов их усвоения – к развитию различных заболеваний, называемых гиповитаминозами.

Известно около 30 витаминов, влияющих на различные стороны обмена веществ, как отдельных клеток, так и всего организма в целом. Это связано с тем, что многие витамины являются составной частью ферментов. Следовательно, отсутствие витаминов вызывает прекращение синтеза ферментов и соответственно нарушение обмена веществ.

Человек получает витамины с пищей растительного и животного происхождения. Для нормальной жизнедеятельности человеку из 30 витаминов необходимо обязательно поступление 16-18. Особенно важное значение имеют витамины В 1 , В 2 , В 12 , РР, С, А и D. До одного года норма потребности витамина А составляет 0,5 мг, В 1 – 0,5 мг, В 2 – 1 мг, РР – 5 мг, В 6 – 0,5 мг, С – 30 мг и D – 0,15 мг. В период от 3 до 7 лет норма потребности витамина А составляет 1 мг, В 1 – 1,5 мг, В 2 – 2,5 мг, РР – 10 мг, В 6 – 1,5 мг, С – 50 мг, а потребность в витамине D остается такой же – 0,15 мг. На момент полового созревания норма потребности витамина А составляет 1,5 мг, В 1 – 2 мг, В 2 – 3 мг, РР – 20 мг, В 6 – 2 мг, С – 70 мг и D – 0,15 мг.

Растущий организм обладает высокой чувствительностью к недостатку витаминов в пище. Наиболее распространенным гиповитаминозом среди детей является заболевание, называемое рахитом. Оно развивается при недостатке в детском питании витамина D и сопровождается нарушением формирования скелета. Встречается рахит у детей до 5 лет.

Следует также отметить, что поступление в организм избыточного количества витаминов может вызвать серьезные нарушения его функциональной деятельности и даже привести к развитию заболеваний, получивших название гипервитаминозы. Поэтому не следует злоупотреблять препаратами витаминов и включать их в питание только по рекомендации врача.

Процессы обмена веществ и энергии особенно интенсив­но идут во время роста и развития детей и подростков, что яв­ляется одной на характернейших черт растущего организма. На этом этапе онтогенеза пластические процессы (ассимиля­ция) значительно преобладают над процессами разрушения (диссимиляцией) и только у взрослого человека между этими едиными и противоположными процессами обмена веществ и энергии устанавливается динамическое равновесие. В детст­ве, когда организм усиленно растет и развивается, преоблада­ют процессы ассимиляции, в старости - процессы диссими­ляций. Эта закономерность может нарушаться в результате различных заболеваний и действия экстремальных факторов окружающей среды.

Для растущего организма характерен интенсивный белко­вый обмен и положительный азотистый баланс. Чем моложе организм, тем выше величина положительного баланса и зна­чительнее способность задерживать белковый азот пищи. С понижением темпов роста снижаются способность к ретенции (удержанию) белкового азота и уровень баланса. Взрослые люди обычно теряют способность к задержке азота пищи и, при достаточном количестве белка в ней, находятся в состоя­нии азотистого равновесия. Однако потенциальные возможности белкового синтеза сохраняются длительное время, осо­бенно при регулярных физических нагрузках.

Но не все белки, поступающие в организм с продуктами питания, равноценны. Их ценность зависит от аминокислот­ного состава. Из 20 аминокислот только 8 являются для чело­века незаменимыми: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин. Для растущего организма необходим также гистидин. Хотя белки и составля­ют 1/5 часть организма человека и около 2/3 его плотного ос­татка, организм обладает лишь незначительными белковыми резервами. Вот почему белковое голодание приводит к задерж­ке, а затем и к полному прекращению роста и физического развития.

Если взрослый человек при отсутствии интенсивных фи­зических нагрузок нуждается в получении 1,1 - 1,3 г белка на 1 кг массы тела в сутки, то у ребенка потребность в белке значительно выше. На первом году он должен получать белка более 4 г на I кг массы тела, в 2-3 года - 4, в 3-5 лет - 3,8 г. Конечными продуктами белкового обмена являются азотсо­держащие вещества - мочевина и мочевая кислота, образую­щиеся в организме в результате дезаминирования, т.е. отде­ления азота от молекул аминокислот, и безазотистые веще­ства, из которых сначала образуется глюкоза, а затем конеч­ные продукты ее обмена - диоксид углерода и вода. Если количество выведенного из организма азота больше количе­ства введенного, то говорят об отрицательном азотистом ба­лансе. Он обычно наблюдается при голодании, некоторых за­болеваниях и на заключительных этапах старения организма. С возрастом изменяется жировой и углеводный обмен. Жиры и жироподобные вещества необходимы для морфологи­ческого и функционального созревания нервной системы, для образования всех видов клеточных мембран. Вот почему по­требность в них велика в «детском возрасте, Так, в первом по­лугодии жизни содержание жиров в пище должно составлять 6-7 г на 1 кг массы тела; к концу года - 4,7 г; в 2-4 года -3,5 г; в 10-11 лет - 1,5 г. Норма для взрослых равна 1 г на 1 кг массы тела.

В зрелом возрасте и в стадии регресса анаболизм переклю­чается с синтеза белков на синтез жира. Это одна из характер­ных черт изменений метаболизма при старении. С возрастом снижается скорость синтеза и самообновления фосфолипидов. Одновременно в крови и тканях возрастает концентрация стеролов, прежде всего - холестерола. Недостаточное поступле­ние в организм непредельных жирных кислот (линолевой, линоленовой и арахидоновой) способствует развитию атеросклеротических процессов в сердечно-сосудистой системе.

С возрастом перестраивается и углеводный обмен, изме­няется потребность в углеводах; она у детей выше, чем у взрослых. У детей углеводы выполняют не только энергети­ческую, но и пластическую функцию, участвуя в образовании гликопротеидов и мукополисахаридов - основного вещества соединительной ткани. С прекращением роста, когда снижа­ется уровень окислительных процессов, снижается и потреб­ность в углеводах. У детей в возрасте 1-3 лет минимальная суточная потребность в углеводах - около 13 г на 1 кг массы тела, у подростков 10-13 лет - 10-11, у юношей - 7,7 г/кг. В старости один из существенных показателей возрастных изменений - резкое снижение скорости устранения гипергликемии, вызванной введением глюкозы.

Высокая гидролабильность детского организма - след­ствие недостаточного регулирующего влияния нервной и эн­докринной систем при большой интенсивности и напряжен­ности водного обмена. Дети способны быстро терять и быстро депонировать воду. В ходе развития происходит перераспреде­ление воды в тканях: увеличивается объём воды в межклеточ­ных пространствах и уменьшается количество внутриклеточ­ной воды. Чем моложе организм, тем больше суточная потреб­ность в воде. В первые полгода жизни потребность в воде на 1 кг массы тела достигает 125-160 г, в 2 года снижается до 115-125 г, в 6 лет - 90-100 г, в 18 лет не превышает 40-50 г.

Баланс минеральных солей зависит от возраста. В растущем организме содержание большинства неорганических соедине­ний меньше, чем у взрослых. Повышенные требования к по­ступлению кальция и фосфора в организм ребенка до 1 года объясняются усиленным образованием костной ткани. Не мень­шее значение эти элементы имеют и в старости, когда возраст­ная минерализация организма может приводить к некомпенси­рованному расходованию этих элементов в костной ткани.

Напротив, содержание поваренной соли чаще всего оказы­вается избыточным, когда начинается возрастное ослабление секреции минералокортикоидов в надпочечниках. Для нор­мального развития организма важны многие макро- и микро­элементы. Особенно важным является железо, необходимое для построения гемоглобина. Дефицит железа в пубертатном периоде у девочек может оказаться причиной задержки роста и развития. Недостаток цинка в рационе мальчиков в возрасте 8-13 лет может вызвать задержку роста на 10-15 см. В процес­сах кроветворения участвуют также медь, молибден, кобальт. Йод необходим для образования гормонов щитовидной желе­зы, фтор - для правильного формирования ткани зубов. В це­лом роль микроэлементов сводится к тому, что они являются тонкими регуляторами обменных процессов, поэтому детский организм наиболее чувствителен к их дефициту. Еще более чувствителен детский организм к дефициту витаминов. Напри­мер, при недостатке в детском питании витамина D, особенно в возрасте до 5 лет, нарушается формирование скелета (рахи­тизм).