Источник энергии для организма: белки, жиры и углеводы, полезные вещества, процессы и виды энергии

Углеводы и жиры — одни из источников энергии для организма человека. В питании людей старших возрастов они играют особую роль. При этом количество данных природных органических соединений в пище пожилых людей должно быть умеренным. Целесообразно ограничение углеводов преимущественно за счет простого сахара и сладостей, в то время как овощи, фрукты и зерновые культуры должны быть в диете в достаточном количестве. Одновременно следует стремиться повысить долю растительных масел в рационе до половины общего количества жиров. Но все эти рекомендации должны быть строго контролируемы. Нередко наблюдаются случаи, когда желание добиться высокой терапевтической эффективности от применения, например, растительных масел обеспечивается бесконтрольным увеличением его в рационе до количеств, которые вызывают лишь бурное послабляющее действие, отрицательно сказываясь на здоровье пациента. Именно поэтому клиницисту важно обратить особое внимание на многие принципиально значимые метаболические аспекты углеводного и жирового обмена. Эти знания помогут ему правильно организовать слаженную работу в «лаборатории» организма пожилого человека.

Виды углеводов

Углеводы — это полиатомные альдегидо- или кетоспирты, которые подразделяются в зависимости от количества мономеров на моно-, олиго- и полисахариды. Основные представители углеводов представлены в таблице 1.

Таблица 1. Основные представители углеводов

Моносахариды (глюкоза, фруктоза, галактоза и др.), олигосахариды (сахароза, мальтоза, лактоза) и перевариваемые полисахариды (крахмал, гликоген) являются основными источниками энергии, а также выполняют пластическую функцию.

Неперевариваемые полисахариды (целлюлоза, гемицеллюлоза и др.), или пищевые волокна, играют в питании важнейшую роль, участвуя в формировании каловых масс, регулируя моторную функцию кишечника, выступая в качестве сорбентов (см. табл. 2). Пектины (коллоидные полисахариды) и пропектины (комплексы пектинов с целлюлозой), камеди, слизи используются в диетотерапии в связи с их детоксицирующим эффектом. К пищевым волокнам относят и не являющийся углеводом лигнин.

Перевариваемые углеводы в тонкой кишке расщепляются до дисахаридов, а далее, путем пристеночного пищеварения, до моносахаридов.

Таблица 2. Роль неперевариваемых полисахаридов (пищевых волокон) в питании

Основные эффекты
Прием пищи
  • увеличение объема пищи и периода ее приема;
  • снижение энергетической плотности пищи;
  • усиление чувства насыщения
Влияние на верхние отделы желудочно-кишечного тракта
  • торможение опорожнения желудка;
  • стимуляция процессов желчеотделения
Влияние на тонкую кишку
  • связывание нутриентов, торможение абсорбции глюкозы, аминокислот и холестерина, токсических веществ;
  • торможение гидролиза крахмала
Влияние на толстую кишку
  • нормализация состава кишечной микрофлоры;
  • формирование каловых масс и повышение скорости их транзита

Метаболизм глюкозы

Всасывание моносахаров происходит путем облегченной диффузии и активного транспорта, что обеспечивает высокую их абсорбцию даже при низкой концентрации в кишечнике. Основным углеводным мономером является глюкоза, которая изначально по системе воротной вены доставляется в печень, а далее или метаболизируется в ней, или поступает в общий кровоток и доставляется в органы и ткани.

Метаболизм глюкозы в тканях начинается с образования глюкозо- 6-фосфата, который, в отличие от свободной глюкозы, не способен покидать клетку. Дальнейшие превращения этого соединения идут в следующих направлениях:

  • расщепление вновь до глюкозы в печени, почках и эпителии кишечника, что позволяет поддерживать постоянный уровень сахара в крови;
  • синтез депонируемой формы глюкозы — гликогена — в печени, мышцах и почках;
  • окисление по основному (аэробному) пути катаболизма;
  • окисление по пути гликолиза (анаэробного катаболизма), обеспечивающего энергией интенсивно работающие (мышечная ткань) или лишенные митохондрий (эритроциты) ткани и клетки;
  • по пентозофосфатному пути превращений, происходящему под действием коферментной формы витамина B 1 , в ходе которого генерируются продукты, используемые в синтезе биологически значимых молекул (НАДФ∙Н2, нуклеиновых кислот).

Таким образом, метаболизм глюкозы может происходить по различным направлениям, использующим ее энергетический потенциал, пластические возможности или способность депонироваться.

Энергия для организма

Обеспечение тканей глюкозой как энергетическим материалом происходит за счет экзогенных сахаров, использования запасов гликогена и синтеза глюкозы из неуглеводных предшественников.

В базальном (доабсорбционном) состоянии печень вырабатывает глюкозу со скоростью, равной ее утилизации во всем организме. Примерно 30 % производства глюкозы печенью происходит за счет гликогенолиза, а 70 % — как результат глюконеогенеза. Общее содержание гликогена в организме составляет примерно 500 г.

Если нет экзогенного поступления глюкозы, его запасы истощаются через 12-18 часов. При отсутствии резервного гликогена в результате голодания резко усиливаются процессы окисления другого энергетического субстрата — жирных кислот. Одновременно увеличивается скорость глюконеогенеза, направленного в первую очередь на обеспечение глюкозой головного мозга, для которого она является основным источником энергии.

Синтез глюкозы

Из аминокислот, лактата, пирувата, глицерина и жирных кислот с нечетной углеродной цепью происходит синтез глюкозы. Большинство аминокислот способны быть предшественниками глюкозы, однако основную роль при этом, как сказано выше, играет аланин. Из аминокислотных источников происходит синтез примерно 6 % эндогенной глюкозы, из глицерина, пирувата и лактата соответственно 2, 1 и 16 %. Вклад жирных кислот в глюконеогенез малозначим, поскольку лишь небольшой процент их имеет нечетное углеродное число.

В постабсорбционном состоянии печень из органа, вырабатывающего глюкозу, превращается в орган запасающий. При повышении концентрации глюкозы скорость ее утилизации периферическими тканями почти не изменяется, поэтому основным механизмом элиминации ее из кровотока является именно депонирование. Только небольшая часть избыточной глюкозы непосредственно участвует в липогенезе, который происходит в печени и в жировой ткани. Эти особенности углеводного метаболизма становятся значимыми при парентеральном введении высококонцентрированных растворов глюкозы.

Принцип самообслуживания

Обмен глюкозы в мышцах по сравнению с печенью носит редуцированный характер. Ведь печень обеспечивает углеводами все органы и ткани, а мышцы работают в соответствии с принципом самообслуживания. Здесь происходит создание запаса гликогена в состоянии покоя и использование его и вновь поступающей глюкозы при работе. Запасы гликогена в мышцах не превышают 1 % от их массы.

Основные энергетические потребности интенсивно работающей мускулатуры удовлетворяются за счет окисления продуктов обмена жиров, а глюкоза используется здесь в гораздо меньшей степени. В процессе гликолиза из нее образуется пируват, который утилизируют скелетные мышцы. При повышении уровня работы мышечная ткань вступает в анаэробные условия, трансформируя пируват в лактат. Тот диффундирует в печень, где используется для глюкозного ресинтеза, а также может окисляться в миокарде, который практически всегда работает в аэробных условиях.

Важнейшие гормоны

Инсулин играет ключевую роль в регуляции углеводного метаболизма, обеспечивая поступление глюкозы в клетку, активируя ее транспорт через клеточные мембраны, ускоряя окисление. Кроме того, он стимулирует гликогенообразование, липо- и протеиногенез. Одновременно тормозится гликогенолиз, липолиз и глюконеогенез.

Глюкагон, наоборот, активирует процессы, ведущие к росту концентрации глюкозы в крови. Глюкокортикостероиды действуют в направлении гипергликемии, стимулируя процессы продукции глюкозы печенью. Адреналин усиливает мобилизацию гликогена. Соматотропный гормон увеличивает секрецию и глюкагона, и инсулина, что ведет как к увеличению депонирования глюкозы, так и к усилению утилизации. Соматостатин тормозит продукцию соматотропина и опо- средованно сдерживает выработку инсулина и глюкагона.

Путь фруктозы

Специфические превращения других перевариваемых углеводов по сравнению с глюкозой имеют меньшее значение, поскольку в основном их метаболизм происходит через образование глюкозы. Отдельное значение придается фруктозе, которая также является быстро утилизируемым источником энергии и еще легче, чем глюкоза, участвует в липогенезе. При этом утилизация не перешедшей в глюкозо-фосфат фруктозы не требует стимуляции инсулином, соответственно, она легче переносится при нарушении толерантности к глюкозе.

Пластическая функция углеводов заключается в их участии в синтезе гликопротеинов и гликолипидов, а также в возможности выступать предшественниками триглицеридов, заменимых аминокислот, использоваться при построении многих других биологически значимых соединений.

Норма углеводов

Известно, что для людей любого возраста углеводы должны поставлять от 55 до 60 % калорийности суточного пищевого рациона. С уменьшением физической активности (что характерно для людей пожилого возраста) снижается потребность организма в пищевом энергообеспечении. Как уже выше было отмечено, ежедневная потребность в калориях снижается на 10 % в каждые последующие 10 лет после достижения 50-летнего возраста. В связи с этим средней суточной нормой обеспечения организма пожилого и старого человека углеводами принято соответственно 300 и 250 г. Однако физически активный образ жизни лиц старших возрастов, сохранение их профессиональной деятельности требует увеличения обозначенных количеств углеводов на 10-15 и даже 20 % (Levin S. R., 1990; Тошев А. Д., 2008).

Осторожно: ожирение!

Углеводы в организме используются преимущественно как источник энергии мышечной работы. При отсутствии физической нагрузки избыток углеводов в пожилом возрасте легко переходит в жир. Особенно неблагоприятное действие в этом отношении оказывает пищевой избыток легкоусвояемых углеводов, как, например, ди- и моносахаридов, стимулирующих трансформацию в жировую ткань всех без исключения пищевых питательных веществ и способствующих развитию ожирения.

Отмеченные метаболические особенности избытка углеводов, в первую очередь простых, в рационе питания лиц старших возрастов определяют одно из важнейших условий их рационального и профилактического питания — особо тщательный подход к организации адекватного питания: энергетическую сбалансированность пищевого рациона с фактическими энергозатратами в процессе старения организма.

Скорость старения

Важно обратить внимание клиницистов на еще один принципиально значимый метаболический аспект избыточного количества простых углеводов в организме людей старших возрастов. Обнаружено, что поступление больших количеств простых углеводов помимо нарушений углеводного обмена и накопления избытков энергии в естественных и неестественных жировых депо способствует существенному извращению жирового обмена. Речь идет о гиперхолестеринемическом действии избытка низкомолекулярных углеводов, напоминающем по своему патофизиологическому эффекту роль насыщенных жиров в генезе прежде всего атеросклероза и связанных с ним заболеваний. Прогрессирование отмеченных явлений заметно потенцирующе влияет на скорость старения организма (Miles J., 2004).

Избыток легкоусвояемых пищевых углеводов самым неблагоприятным образом влияет на нормальный микробиоценоз кишечника. В условиях избыточного углеводистого питания в организме пожилого человека активизируется патологическое размножение аэробных микроорганизмов кишечника, особенно факультативных, условно патогенных — стафилококков, протея, клостридий, клебсиел, цитробактерий и др. Алиментарный генез кишечного дисбиоза провоцирует появление синдрома бродильной кишечной диспепсии и связанного с этим процессом симптомокомплекса энтеральных нарушений, метаболических расстройств, регуляторных дисфункций многих органов и систем организма, т. е. формирование многих и многих патологических явлений в организме за счет падения контролирующего и регулирующего влияния нормальной кишечной эндоэкологии на важнейшие функции организма. Дисбиоз кишечника — один из заметных стимуляторов скорости развития старения, формирования преждевременного и патологического старения.

Спасительная клетчатка

Противоположным эффектом обладают углеводы, представляющие собой полисахариды и пищевые волокна — пектиновые вещества, гемицеллюлоза, лигнин и другие слабоперевариваемые в кишечнике полисахариды. Особую ценность представляет собой клетчатка овощей и фруктов, сложные углеводы которых в наибольшей степени способствуют нормализации кишечной микрофлоры. В пожилом возрасте пищевые волокна являются важным средством нормализации работы кишечника, снижения в нем гнилостных процессов.

Жировой обмен

Жиры (липиды), представленные в организме в основном триглицеридами (соединениями глицерина и жирных кислот), представляют собой наиболее важный энергетический субстрат. Благодаря высокой калорической плотности (в среднем 9 ккал/г, по сравнению с 4 ккал/г у глюкозы) жиры составляют более 80 % энергетических запасов в организме.

Скудные трансизомеры

При обработке растительных масел — создании маргаринов — происходит изомеризация ненасыщенных жирных кислот с созданием трансизомеров, которые утрачивают некоторые биологические функции своих предшественников.

Энергетическая ценность отдельных триглицеридов определяется длиной углеродных цепей жирных кислот, поэтому при использовании специализированных энтеральных и парентеральных продуктов их калорийность может быть ниже средней (например, у препаратов триглицеридов со средней углеродной цепью — 8 ккал/г). При нормальном питании жиры обеспечивают до 40 % от общей калорийности питания.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология» со скидкой 10%!

Жирные кислоты

Жирные кислоты подразделяются на насыщенные и ненасыщенные (содержащие двойные химические связи). Источником насыщенных жирных кислот является преимущественно животная пища, ненасыщенных — продукты растительного происхождения.

Пищевая ценность жировых продуктов определяется их триглицеридным спектром и наличием других факторов липидной природы. Синтез насыщенных и мононенасыщенных жирных кислот возможен в организме человека.

Особое значение в диетологии придается ненасыщенным жирным кислотам, являющимся эссенциальными факторами питания. Полиненасыщенные жирные кислоты (ПНЖК), несущие в организме важнейшие функции (это предшественники ряда биологически активных веществ), должны поступать экзогенно.

К эссенциальным жирным кислотам относятся линолевая и линоленовая. Линолевая кислота метаболизируется в организме в арахидоновую, а линоленовая в эйкозапентаеновую кислоту, которые могут поступать в организм с мясными и рыбными продуктами, но в незначительных количествах (см. табл. 3), компонентами клеточных мембран, предшественниками гормоноподобных веществ. Линолевая и образуемая из нее арахидоновая кислота относятся к ω -6 жирным кислотам, линоленовая кислота и продукты ее метаболизма эйкозопентаеновая и дезоксогексаеновая — ω -3 жирные кислоты.

Дефицит эссенциальных жирных кислот в рационе вызывает прежде всего нарушение биосинтеза арахидоновой кислоты, которая входит в большом количестве в состав структурных фосфолипидов и простагландинов. Содержание линолевой и линоленовой кислоты во многом определяет биологическую ценность пищевых продуктов. Недостаточность эссенциальных жирных кислот развивается в основном у больных, находящихся на полном парентеральном питании без применения жировых эмульсий.

Таблица 3. Основные пищевые источники различных жирных кислот

Длина углеродной цепи

Триглицериды со средней длиной углеродной цепи (МСТ, СЦТ) имеют более высокую усвояемость, чем другие виды триглицеридов. Они гидролизируются в кишечнике без участия желчи, больше атакуются липазами. Кроме того, введение среднецепочечных триглицеридов оказывает гипохолестеринемический эффект, так как они не участвуют в мицеллообразовании, необходимом для всасывания холестерина.

Недостатком применения препаратов, содержащих триглицериды со средней длиной углеродной цепи, является то, что они используются исключительно как энергетический (но не пластический) субстрат. Кроме того, окисление таких жирных кислот приводит к интенсивному накоплению кетоновых тел и может усугубить ацидоз.

Стерины и фосфолипиды

Стерины и фосфолипиды не относятся к эссенциальным факторам питания, но играют важнейшую роль в метаболизме.

Фосфолипиды являются незаменимыми компонентами организма. Их основная роль — обеспечение фундаментальной структуры мембраны как барьера проницаемости. Биосинтез структурных фосфолипидов в печени направлен на обеспечение ими самой печени и других органов. Фосфолипиды оказывают липотропное действие, способствуя мицеллообразованию жиров в пищеварительном тракте, транспорту их из печени, а также стабилизируя липопротеины.

Стерины в животных продуктах представлены холестерином, а в растительных — смесью фитостеринов.

Роль холестерина

Холестерин является структурным компонентом мембран и предшественником стероидов (гормонов, витамина D, желчных кислот). Пополнение запасов холестерина происходит за счет кишечной абсорбции и биосинтеза (1 г/сут). Количество всасывающегося в кишечнике холестерина ограничено (0,3-0,5 г/сут), и при излишнем содержании в пище он выводится с фекалиями.

Абсорбция холестерина ингибируется его растительными структурными аналогами фитостеринами. Сами фитостерины тоже могут включаться в эндогенные липидные образования, но их участие минимально. При избыточном поступлении холестерина с пищей его синтез в печени, кишечнике и коже практически прекращается.

Поступающий из кишечника в составе хиломикронов холестерин в значительной степени задерживается в печени, где используется для построения мембран гепатоцитов и в синтезе желчных кислот. В составе желчи в результате реабсорбции в организм возвращается около 40 % жиров. Не подвергшиеся обратному всасыванию в кишечнике холестерин и желчные кислоты — это основной путь выведения холестерина из организма.

Транспортировка липидов

В кровотоке липиды существуют в составе транспортных форм: хиломикронов, липопротеидов очень низкой плотности (ЛПОНП), липопротеидов низкой плотности (ЛПНП) и липопротеидов высокой плотности (ЛПВП). В энтероцитах образуются хиломикроны и ЛОПНП, в гепатоцитах — ЛПОНП и ЛПВП, в плазме крови — ЛПВП и ЛПНП.

Хиломикроны и ЛПОНП транспортируют преимущественно триглицериды, а ЛПНП и ЛПВП — холестерин. Холестеринсодержащие липопротеиды регулируют баланс холестерина в клетках: ЛПНП обеспечивают потребности, а ЛПВП предупреждают избыточное накопление.

Различают пять типов дислипопротеинемий. I тип связан с нарушением лизиса хиломикронов, IIа тип — результат нарушения распада ЛПНП и снижения поступления холестерина в клетку, II тип характеризуется замедлением распада ЛПОНП, IV тип связан с усилением синтеза триглицеридов в печени в результате гиперинсулинизма, механизмы развития IIб и V типов точно неизвестны.

На состав триглицеридов и липопротеинов выраженное влияние оказывает состав пищи. Продукты животного происхождения, включающие преимущественно полиненасыщенные жирные кислоты и холестерин, имеют атерогенный эффект, содержание в крови ЛПВП и триглицеридов. Наоборот, ненасыщенные жирные кислоты (их источник — растительные масла), и в особенности ω- 3 жирные кислоты (содержащиеся в жире рыб), оказывают профилактическое действие (см. табл. 4).

Таблица 4. Влияние жирных кислот на липопротеидный спектр

Примечание: — повышают, ↓ — снижают.

Ключевая роль печени

Как и при метаболизме углеводов, ведущую роль в липидном обмене играет печень. Исключительно в печени локализованы такие процессы, как биосинтез холестерина, желчных кислот и фосфолипидов. В обмене других липидов ей присущи модифицирующие и регуляторные функции.

В отличие от богатых запасов гликогена, печень практически не содержит собственных резервов триглицеридов (менее 1 %), однако занимает ключевую позицию в процессах мобилизации, потребления и синтеза жиров в других тканях. Такая ее роль основана на том, что практически все потоки обмена жиров проходят через печень: липиды пищи в виде хиломикронов поступают в нее через общий кровоток по печеночной артерии; свободные жирные кислоты, мобилизованные из жировых депо, переносятся в виде комплексов с альбумином; соли желчных кислот, реабсорбируясь в кишечнике, вновь поступают по воротной вене.

Энергетический потенциал липидов обеспечивает более половины основной энергетической потребности большинства тканей, что особенно выражено в условиях голода. При голодании или снижении утилизации глюкозы триглицериды жировой ткани гидролизируются в жирные кислоты, которые в таких органах, как сердце, мышцы и печень, подвергаются интенсивному β -окислению с образованием АТФ.

Востребованность кетоновых тел

Продуктами неполной утилизации жиров печенью являются кетоновые тела. К ним относятся ацетоуксусная кислота, β -оксибутират и ацетон.

В норме кетоны образуются в незначительном количестве и полностью утилизируются как источник энергии нервной тканью, скелетными и висцеральными мышцами. В условиях ускоренного катаболизма жирных кислот и/или снижения утилизации углеводов синтез кетонов может превысить возможности их окисления внепеченочными органами и привести к развитию метаболического ацидоза. Ингибирующее влияние на кетоногенез оказывают углеводы рациона.

Головной мозг и нервная ткань практически не используют жиры как источник энергии, так как здесь не происходит β -окисления. Однако эти ткани могут использовать кетоновые тела. В норме доля процессов окисления кетоновых тел незначительна по сравнению с катаболизмом глюкозы. Однако в условиях голодания кетоновые тела становятся важным альтернативным источником энергии.

Кетоны используются и мышцами, наряду с происходящей здесь утилизацией глюкозы и β -окислением. При незначительной физической нагрузке мышцы окисляют в основном углеводы, увеличение интенсивности и длительности работы требует преобладания катаболизма жиров, β -окисление в большинстве тканей стимулируется переносчиком липидов карнитином, но особенно весомое значение он имеет для мышечной ткани.

Окисление ПНЖК

Свободнорадикальные формы кислорода вызывают процессы перикисного окисления, которому в первую очередь подвержены полиненасыщенные жирные кислоты. Это физиологический процесс, обеспечивающий регуляцию активности клеток. Однако при избыточном образовании свободных радикалов их окислительная активность приводит к нарушению структуры и гибели клетки. Для ограничения перикисного окисления существует система антиоксидантной защиты, которая ингибирует образование свободных радикалов и разлагает токсичные продукты их окисления. Функционирование этой системы во многом зависит от алиментарно поступающих антиоксидантов: токоферолов, селена, серосодержащих аминокислот, аскорбиновой кислоты, рутина.

Метаболизм углеводов и жиров

Синтез жирных кислот (за исключением эссенциальных) может происходить из любых веществ, для которых конечным продуктом метаболизма является ацетил- Ко-А, но основным источником липогенеза являются углеводы. При излишнем количестве глюкозы в печени (после еды) и достаточных запасах гликогена глюкоза начинает разлагаться до предшественников жирных кислот. То есть если потребление углеводов превышает энергетические потребности организма, их избыток в дальнейшем превращается в жиры.

Регуляция метаболизма жирных кислот и глюкозы тесно связаны: повышенное окисление жирных кислот ингибирует утилизацию глюкозы. Поэтому инфузия жировых эмульсий с соответственным повышением уровня свободных жирных кислот в крови ослабляет действие инсулина на утилизацию глюкозы и стимулирует печеночный глюконеогенез. Этот момент немаловажен при парентеральном питании больных с изначально нарушенной толерантностью к глюкозе.

Секрет взаимосвязи

Взаимосвязь между обменом основных нутриентов осуществляется за счет существования общих предшественников и промежуточных продуктов метаболизма.

Наиболее важным общим продуктом метаболизма, участвующим во всех обменных процессах, является ацетил-Ко-А. Поток веществ в сторону липогенеза от углеводных и белковых источников через ацетил-Ко-А носит однонаправленный характер, поскольку в организме не существует механизма, обеспечивающего превращение этого двухуглеродного вещества в трехуглеродные соединения, необходимые для глюконеогенеза или синтеза заменимых аминокислот. Хотя при катаболизме липидов и происходит образование небольших количеств промежуточных трехуглеродных продуктов, оно малозначительно.

Общим конечным путем всех метаболических систем является цикл Кребса и реакции дыхательной цепи. Цикл лимонной кислоты является поставщиком двуокиси углерода для реакций синтеза жирных кислот и глюконеогенеза, образования мочевины и пуринов и пиримидинов. Взаимосвязь между процессами углеводного и азотного обмена достигается посредством промежуточных продуктов цикла Кребса. Другие звенья этого цикла являются предшественниками липонеогенеза.

Как уже отмечалось выше, основную роль в метаболизме нутриентов играет печень (см. табл. 5).

Таблица 5. Роль печени в метаболизме белков, жиров и углеводов

Норма потребления жиров

Физиологическим верхним пределом количественного обеспечения пожилого человека пищевыми жирами следует рассматривать 1 г/кг для возраста 60-75 лет и 0,8 г/кг для возраста старше 75 лет. Если в молодом и среднем возрасте 30 % от общего потребляемого количества жира должно быть представлено жирами растительного происхождения, а 70 %, соответственно, животными, то у лиц пожилого и старческого возраста представленное количественное соотношение растительных и животных жиров в определенной степени изменяется в сторону увеличения доли растительных жиров до 40 % в пожилом возрасте и до 50 % у лиц старше 75 лет (Goigot J. Et al., 1995 и др.).

Опасность развития атеросклероза, связанная с потреблением богатых холестерином продуктов и большим потреблением жира, не кажется такой критичной для пожилых людей, как для людей среднего возраста. Увеличение квоты жиров с ненасыщенной (по водороду) химической структурой для пожилых людей, и тем более для стариков, прежде всего имеет антиоксидантную направленность, существенно активизирующую санирующие функции организма, повышающие интенсивность процессов перикисного окисления липидов, различными путями интенсифицирующие защиту клеточных структур от свободнорадикального повреждения.

Геронтопротективные пищевые факторы

Важным прямым и опосредованным метаболическим аспектом растительных жиров в организме пожилого человека рассматривается использование стимулирующих возможностей растительных масел на различные физиологические процессы желудочно-кишечного тракта, других систем, начиная с активизации моторики кишечника, билиарной динамики (холекинетический и холеретический компоненты), усиления сорбционных свойств энтероцитов и т. п. и заканчивая многогранными эффектами, положительным влиянием на процессы клеточной регенерации, функции мембран, дифференцировки клеток, синтез многих простагландинов.

Полиненасыщенные жирные кислоты растительных жиров, в отличие от преимущественно энергетической сути насыщенных жирных кислот животных жиров, в стареющем организме с каждым годом его жизни играют все более значимые для противодействия старению функции: обеспечивают всевозрастающие потребности в витаминах и биологически активных веществах антиоксидантной направленности, восстанавливают прогрессирующее снижение цитопротективных свойств клеточных структур, особенно жизненно важных органов, нивелируют инволюционные расстройства мембран клеток и многое-многое другое.

По своей физиологической сути полиненасыщенные жирные кислоты наравне с так называемыми естественными пептидными биорегуляторами могут рассматриваться как геронтопротективные пищевые факторы, физиологическая значимость которых велика в любые периоды жизни человека, но особенно возрастает с наступлением пожилого, тем более старческого возраста.

  • 7. Что понимают под функциональной подготовленностью?
  • 8. Что такое физическое развитие?
  • 9. Из каких разделов состоит учебный материал?
  • 10. На какие учебные отделения распределяются студенты?
  • 11. Какие основные зачетные требования?
  • 12. Что включает итоговая аттестация по учебному предмету "Физическая культура"?
  • 15. Почему кости детей более эластичны и упруги?
  • 30. Укажите наиболее эффективную форму отдыха при умственном труде.
  • 31. От чего защищает организм такое функциональное состояние, как утомление?
  • 32. Когда лучше тренироваться, учитывая биологические ритмы?
  • 33. К чему приводит пониженная двигательная активность?
  • 37. В каких видах спорта наблюдается тесная связь между максимальным потреблением кислорода (мпк) и тренированностью?
  • 38. Какова норма потребления белков в день для взрослого человека?
  • 41. Каково основное значение витаминов для организма?
  • 42. Сколько калорий необходимо потреблять в течение рабочего дня (8-10 ч) мужчине, занимающимся умственным и физическим трудом?
  • 45. Физические упражнения какого характера оказывают наиболее эффективное воздействие на сердечно-сосудистую систему?
  • 51. Что является наиболее объективным показателем здоровья?
  • 56. Какие существуют разновидности закаливания водой?
  • 66. Чем можно объяснить наличие второго подъема работоспособности в течении суток?
  • 72. Какова интенсивность физических упражнений более предпочтительна для оптимального взаимодействия между умственной и физический работоспособностью студентов?
  • 73. Какой вариант занятий со специальной медицинской группой оказывает наибольший положительный эффект?
  • 74. Что такое физическое воспитание?
  • 75. Что является целью физического воспитания?
  • 77 . Как влияет соревновательная обстановка на физиологический эффект от физического упражнения?
  • 78. Что является основным средством физического воспитания?
  • 79. Что такое физическое упражнение?
  • 80. Чем отличается физическое упражнение от трудового двигательного действия?
  • 81. Что понимают под техникой двигательного действия?
  • 82. Какие этапы выделяются в период обучения?
  • 83. Разучивание - это какой этап в обучении движениям?
  • 89. Сколько мышц в теле человека?
  • 96. Что понимают под быстротой человека?
  • 97. Методы развития быстроты
  • 98. Какие выделяют элементарные формы быстроты?
  • 99. Что понимают под гибкостью человека?
  • 105. Какую последовательность упражнений необходимо соблюдать во время занятий на гибкость?
  • 106. Сколько нужно тренироваться для развития гибкости?
  • 107. Как быстро с возрастом теряется гибкость?
  • 108. Что понимают под выносливостью человека?
  • 111. Какие изменения в функциональном состоянии человека вызывает соревновательная обстановка?
  • 112. Что такое массовый спорт (спорт для всех)?
  • 113. Что такое спорт высших достижений (олимпийский спорт)?
  • 114. Что такое профессиональный (зрелищно-коммерческий) спорт?
  • 116. С какой периодичностью проводятся Всемирные Универсиады?
  • 136. На чём основан метод корреляции?
  • 148. Укажите один из видов педагогического контроля.
  • 149. Что является целью самоконтроля?
  • 150. Укажите субъективные данные самоконтроля.
  • 39. Что является главным источником энергии в организме?

    Углеводы в организме главный источник энергии. Они всасываются в кровь в основном в виде глюкозы. Это вещество разносится по тканям и клеткам организма. В клетках глюкоза при участии ряда факторов окисляется до воды и углекислого газа. Одновременно освобождается энергия (4,1 ккал), которая используется организмом при реакциях синтеза или при мышечной работе

    40. Когда преимущественно используются жиры как источник энергии при физической деятельности? Как энергетический материал жир используется при состоянии покоя и выполнении длительной малоинтенсивной физической работы.

    41. Каково основное значение витаминов для организма?

    Значение витаминов состоит в том, что, присутствуя в организме в ничтожных количествах, они регулируют реакции обмена веществ.

    42. Сколько калорий необходимо потреблять в течение рабочего дня (8-10 ч) мужчине, занимающимся умственным и физическим трудом?

    Мужчине среднего возраста, занимающемуся и умственным, и физическим трудом в течение 8-10ч, необходимо потреблять в день 118г белков, 56г жиров, 500г углеводов. В пересчете это составляет около 3000 ккал.

    43. Какое количество энергии необходимо затрачивать ежедневно для нормальной жизнедеятельности? Люди разных профессий затрачивают при своей деятельности разное количество энергии. Например, занимающийся интеллектуальным трудом в день тратит менее 3000 больших калорий. Человек, занимающийся тяжелым физическим трудом, за день затрачивает в 2 раза больше энергии.

    44. Какова причина "гравитационного шока"?

    Г равитационного шока может наступить после резкого прекращения длительной, достаточно интенсивной циклической работы (спортивная ходьба, бег).

    Прекращение ритмичной работы мышц нижних конечностей сразу лишает помощи систему кровообращения: кровь под действием гравитации остается в крупных венозных сосудах ног, движение ее замедляется, резко снижается возврат крови к сердцу, а от него в артериальное сосудистое русло, давление артериальной крови падает, мозг оказывается в условиях пониженного кровоснабжения и гипоксии.

    45. Физические упражнения какого характера оказывают наиболее эффективное воздействие на сердечно-сосудистую систему?

    Систематическая тренировка средствами физической культура и спорта не только стимулирует развитие сердечно-сосудистой и дыхательной системы, но и способствует значительному повышению уровня потребления кислорода организмом в целом. Наиболее эффективно совместную функцию взаимоотношения дыхания, крови, кровообращения развивают упражнения циклического характера, выполняемые на свежем воздухе

    46. Какова причина так называемой "мертвой точки"?

    Это обуславливается несоответствием интенсивной деятельности двигательного аппарата и функциональными возможностями вегетативных систем, призванных обеспечить эту деятельность.

    47. Как можно ослабить проявление "мертвой точки"?

    Одним из инструментов ослабления проявления "мертвой точки" является разминка, которая способствует более быстрому наступлению "второго дыхания".

    48. Какие меры способствуют качественной готовности студентов к активной учебной

    Синхронность ритмов во внешней среде и внутри организма, правильно составленный распорядок дня, распределение работы и отдыха таким образом, чтобы наивысшая нагрузка соответствовала наибольшим возможностям организма с учетом колебаний биологических ритмов, - все это служит залогом высокой производительности труда и сохранения здоровья.

    49. Что понимают под здоровьем?

    Здоровье - это нормальное психосоматическое состояние человека, отражающее его полное физическое, психическое и социальное благополучие и обеспечивающее адекватную окружающим условиям регуляцию поведения и деятельности личности.

    Известно также определение, принятое Всемирной организацией здравоохранения (ВОЗ), в соответствии с которым здоровье - это состояние полного физического, душевного и социального благополучия, а не только отсутствие болезни или физических дефектов.

    50. Какие компоненты здоровья в настоящее время принято выделять?

      Соматическое - текущее состояние органов и систем органов человеческого организма.

      Физическое - уровень развития и функциональных возможностей органов и систем организма. Основа физического здоровья - это морфологические и функциональные резервы клеток, тканей, органов и систем органов, обеспечивающие приспособление организма к воздействию различных факторов.

      Психическое - состояние психической сферы человека. Основу психического здоровья составляет состояние общего душевного комфорта, обеспечивающее адекватную регуляцию поведения.

      Сексуальное - комплекс соматических, эмоциональных, интеллектуальных и социальных аспектов сексуального существования человека, позитивно обогащающих личность, повышающих коммуникабельность человека и его способность к любви.

      Нравственное - комплекс характеристик мотивационной и потребностно-информационной основы жизнедеятельности человека. Основу нравственного компонента здоровья человека определяет система ценностей, установок и мотивов поведения индивида в социальной среде.

    Углеводы – главный источник энергии в организме человека.

    Общая формула углеводов Сn(H2O)m

    Углеводы - вещества состава С м Н 2п О п, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80 % сухого вещества растений и около 20 % животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О).

    Запасы углеводов в виде гликогена в организме человека составляют примерно 500 г. Основная масса его (2/3) находится в мышцах, 1/3 – в печени. В промежутках между приемами пищи гликоген распадается на молекулы глюкозы, что смягчает колебания уровня сахара в крови. Запасы гликогена без поступления углеводов истощаются примерно за 12-18 часов. В этом случае включается механизм образования углеводов из промежуточных продуктов обмена белков. Это обусловлено тем, что углеводы жизненно необходимы для образования энергии в тканях, особенно мозга. Клетки мозга получают энергию преимущественно за счет окисления глюкозы.

    Виды углеводов

    Углеводы по своей химической структуре можно разделить на простые углеводы (моносахариды и дисахариды) и сложные углеводы (полисахариды).

    Простые углеводы (сахара)

    Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как "топливо" для клеток. Глюкоза – необходимый компонент обмена углеводов. При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

    Глюкоза "в чистом виде", как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.

    Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

    Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное "топливо" - глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

    Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

    Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

    Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот "пучит". В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

    Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание - галактоземия, которая ведет к умственной отсталости.

    Сахароза - это дисахарид, образованный молекулами глюкозы и фруктозы. Содержание сахарозы в сахаре 99,5%. То, что сахар – это "белая смерть", любители сладкого знают так же хорошо, как курильщики то, что капля никотина убивает лошадь. К сожалению, обе эти прописные истины чаще служат поводом для шуток, чем для серьезных размышлений и практических выводов.

    Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют "носителем пустых калорий", так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

    При соединении двух молекул глюкозы образуется мальтоза - солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

    Сложные углеводы

    Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

    Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов.

    Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях "Геркулес" - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука (10-15,5%). По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

    В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы - инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

    Гликоген - "животный крахмал" - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

    Продукты с высоким содержанием углеводов

    Наиболее распространенными углеводами являются глюкоза, фруктоза и сахароза, входящие в состав овощей, фруктов и меда. Лактоза входит в состав молока. Сахар-рафинад представляет собой соединение фруктозы и глюкозы.

    Глюкоза играет центральную роль в процессе обмена веществ. Она является поставщиком энергии для таких органов, как головной мозг, почки, и способствует выработке красных кровяных телец.

    Человеческий организм не в состоянии делать слишком большие запасы глюкозы и потому нуждается в ее регулярном пополнении. Но это не значит, что нужно есть глюкозу в чистом виде. Гораздо полезнее употреблять ее в составе более сложных углеводных соединений, например, крахмала, который содержится в овощах, фруктах, зерновых. Все эти продукты, кроме того, являются настоящим кладезем витаминов, клетчатки, микроэлементов и других полезных веществ, помогающих организму бороться со многими болезнями. Полисахариды должны составлять большую часть всех поступающих в наш организм углеводов.

    Важнейшие источники углеводов

    Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы.

    Для обозначения количества углеводов в пище используется специальная хлебная единица.

    К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

    Углеводы применяют в качестве:

    Лекарственных средств,

    Для производства бездымного пороха (пироксилина),

    Взрывчатых веществ,

    Искусственных волокон (вискоза).

    Огромное значение имеет целлюлоза как источник для получения этилового спирта

    Существует несколько причин, по которым мы должны обратить на питание особое внимание. Во-первых, все клетки и ткани нашего организма формируются из той пищи, которую мы едим. Во-вторых, пища является источником энергии, необходимой для функционирования организма. В-третьих, пища - это главная часть окружающей среды, с которой мы взаимодействуем. И последнее, пища была создана для того, чтобы наслаждаться ею, для того, чтобы быть неотъемлемой частью радости жизни, и наши чувства позволяют нам по достоинству оценить качество, вкус и саму ткань поедаемого продукта.

    Сегодня мы предлагаем вам поговорить о энергетических питательных веществах, содержащихся в нашей пище. К ним относятся углеводы, жиры и белки. Говоря в общем, мы считаем углеводы непосредственным источником энергии, белки - теми кирпичиками, из которых строится весь наш организм, и жиры - энергетическими складами.

    В овощах и плодах основные питательные вещества представлены углеводами. Продукты сада и огорода содержат простые (глюкоза, фруктоза, сахароза) и сложные (крахмал, пектины, клетчатка) углеводы. В овощах углеводы представлены крахмалом, за исключением свеклы и моркови, где преобладают сахара. Во фруктах преимущественно содержатся сахара.

    Крахмал является важнейшим углеводом растений. Состоит он из большого количества молекул глюкозы. Крахмалом богат картофель. Несколько меньше его в бобовых и поздних сортах яблок. В яблоках, например, в процессе их созревания количество крахмала увеличивается, а при хранении снижается. Это вызвано тем, что при дозревании во время хранения крахмал в продукте переходит в сахар. Много его в зеленых бананах, а в зрелых в 10 раз меньше, так как он превращается в сахара. Крахмал нужен организму в основном для удовлетворения его потребности в сахаре. В пищеварительном тракте под влиянием ферментов и кислот крахмал расщепляется на молекулы глюкозы, которые затем используются для нужд организма.

    Фруктоза содержится во многих плодах и овощах. Чем богаче ею плоды, тем они слаще. Доказана прямая зависимость выносливости и работоспособности человека от содержания этого вещества в мышцах и печени. При малой подвижности человека, нервных стрессах, гнилостных процессах в кишечнике, тучности фруктоза наиболее благоприятна из прочих углеводов.

    Глюкоза находится в плодах в свободном виде. Она входит в состав крахмала, клетчатки, сахарозы и других углеводов. Глюкоза, которую наш организм использует для производства энергии, - это высококачественное горючее. Циркулируя с потоком крови, глюкоза восполняет постоянную нужду клеток организма. Она наиболее быстро и легко используется организмом для образования гликогена, питания тканей мозга, работы мышц, в том числе сердечной.

    Сахароза в больших количествах содержится в сахарной свекле и сахарном тростнике. Независимо от источников сырья, сахар представляет собой почти чистую сахарозу. Ее содержание в сахарном песке составляет 99,75%, а в сахаре-рафинаде – 99,9%.

    Для усвоения простых углеводов (глюкозы, фруктозы и галактозы) пищеварения не требуется. Столовый сахар и мальтоза перевариваются в простые сахара в считанные минуты. Для того чтобы снабдить кровь этой быстро усваиваемой энергией, нашему рациону требуется совсем немного сахара. В случае перенасыщения поджелудочная железа вынуждена работать сверхурочно, производя избыточный инсулин для превращения излишков сахара в жир. В любой определенный промежуток времени наш организм способен справляться должным образом только с ограниченным количеством простых сахаров.

    Излишки сахара стопорят человеческую машину подобно тому, как переполненный карбюратор застопоривает двигатель автомобиля, это всего лишь одна из опасностей злоупотребления сахаром. Есть и другие вредные воздействия. Они таковы:

    • истощение запасов витамина В1;
    • заболевание зубов, поскольку сахар создает идеальную среду для разрушающих зубы микроорганизмов;
    • угнетение иммунной системы вследствие того, что сахар угнетает способность белых кровяных клеток убивать микробы;
    • повышенное количество жира в крови (от превращения глюкозы в триглицерид);
    • стимулирование гипогликемии и возможное начало диабета;
    • желудочное раздражение, возникающее, когда в желудке содержится более 10% сахара (раствор концентрированного сахара – это сильный раздражитель слизистой оболочки);
    • запор (в богатых сахаром продуктах обычно недостаточное содержание волокон);
    • повышение уровня холестерина в крови.

    Мы сможем избежать этих осложнений, если заменим в нашем рационе рафинированный сахар на фрукты (один зрелый банан содержит шесть чайных ложек сахара), а основой диеты сделаем сложные углеводы, содержащиеся в пшенице, рисе, картофеле, бобовых и других продуктах, в составе которых есть крахмал.

    Большинство сложных углеводов усваиваются на протяжении нескольких часов и высвобождают простые сахара постепенно. Это позволяет поджелудочной железе, печени, надпочечной железе, почкам и другим органам использовать эту энергию должным образом. Более того, из-за повышенного волокнистого содержания углеводсодержащих продуктов мы обычно на такой диете не переедаем.

    Другое преимущество сложных углеводов состоит в том, что они содержат минералы, необходимые для соответствующего усвоения других питательных веществ. Рафинированный сахар не имеет ни минералов, ни витаминов, ни волокнистого содержания.

    Идеальная диета должна включать, если вообще должна его содержать, минимальное количество сахара (меда, сахарозы, мальтозы, сладких сиропов), а вместо него - обилие сложных углеводов, которыми богаты картофель, злаковые, хлеб и иные продукты из муки грубого помола. Сложные углеводы должны составлять главную часть ежедневного потребления калорий.

    «И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя, - вам сие будет в пищу» (Бытие 1: 29).

    Подготовила А. Конакова

    Источниками энергии для организма человека являются белки, жиры, углеводы которые составляют 90% сухого веса всего питания и поставляют 100% энергии. Все три питательных вещества обеспечивают энергию (измеряется в калориях), но количество энергии в 1 грамме вещества различно:

    • 4 килокалории в грамме углеводов или белков;
    • 9 килокалорий в грамме жира.

    В грамме жира в 2 раза больше энергии для организма чем в грамме углеводов и белков.

    Эти питательные вещества также различаются в том, как быстро они поставляют энергию. Углеводы поставляются быстрее, а жиры медленнее.

    Белки, жиры, углеводы перевариваются в кишечнике, где они разбиваются на основные единицы:

    • углеводы в сахаре
    • белки в аминокислотах
    • жиры в жирных кислотах и глицерине.

    Организм использует эти базовые единицы для создания веществ, которые необходимы для выполнения основных жизненных функций (в том числе другие углеводы, белки, жиры).

    Виды углеводов

    В зависимости от размера молекулы углеводов могут быть простыми или сложными.

    • Простые углеводы: различные виды сахаров, таких, как глюкоза и сахароза (столовый сахар), являются простыми углеводами. Это маленькие молекулы, поэтому они быстро поглощается организмом и являются быстрым источником энергии. Они быстро увеличивают уровень глюкозы в крови (уровень сахара в крови). Фрукты, молочные продукты, мед и кленовый сироп содержат большое количество простых углеводов, которые обеспечивают сладкий вкус в большинстве конфет и пирожных.
    • Сложные углеводы: эти углеводы состоят из длинных строк простых углеводов. Поскольку сложные углеводы большие молекулы, они должны быть разбиты на простые молекулы прежде, чем они могут быть поглощены. Таким образом, они, как правило, обеспечивают энергию для организма более медленно, чем простые, но все же быстрее, чем белок или жир. Это потому что они перевариваются медленнее, чем простые углеводы, и меньше шансов быть преобразованными в жир. Они также повышают уровень сахара в крови более медленными темпами и на более низких уровнях, чем простые, но для более длительного времени. Сложные углеводы включают крахмал и белки, которые имеются в продуктах пшеницы (хлеб и макаронные изделия), другие зерновые (рожь и кукуруза), бобы и корнеплоды (картофель).

    Углеводы могут быть:

    • рафинированными
    • нерафинированными

    Рафинированные – обработанные, волокна и отруби, а также многие из витаминов и минералов, которые они содержат удалены. Таким образом в процессе метаболизма обрабатываются эти углеводы быстро и обеспечивают мало питания, хотя они содержат примерно столько же калорий. Рафинированные продукты часто обогащенные, то есть витамины и минералы добавляются искусственно, чтобы повысить питательную ценность. Диета с высоким содержанием простых или рафинированных углеводов, как правило, повышают риск ожирения и диабета.

    Нерафинированные углеводы из растительных продуктов. В них углеводы содержатся в виде крахмала и клетчатки. Это такие продукты как картофель, цельное зерно, овощи, фрукты.

    Если люди потребляют больше углеводов, чем они нуждаются, организм хранит некоторые из этих углеводов в клетках (как гликоген), а остальные преобразует в жир. Гликоген является сложным углеводом для преобразования в энергию и хранится в печени и мышцах. Мышцы используют гликоген энергию в периоды интенсивных упражнений. Количество углеводов, хранящихся как гликоген, может обеспечить калориями на день. Несколько других тканей тела хранят сложные углеводы, которые не могут быть использованы как источник энергии для организма.

    Гликемический индекс углеводов

    Гликемический индекс углеводов представляет значение, как быстро их потребление повышает уровень сахара в крови. Диапазон значений от 1 (самое медленное усвоение) до 100 (быстрое, индекс чистой глюкозы). Однако, как быстро на самом деле повышается уровень зависит от продуктов, попадающих в организм.

    Гликемический индекс, как правило, ниже для сложных углеводов, чем для простых углеводов, но есть исключения. Например, фруктоза (сахар в плодах) имеет незначительное влияние на уровень сахара в крови.

    На гликемический индекс влияет технология обработки и состав продовольствия:

    • обработка: обработанные, нарезанные или мелко молотые продукты, как правило, имеют высокий гликемический индекс
    • тип крахмала: различные виды крахмала поглощаются по-разному. Крахмал картофельный переваривается и сравнительно быстро впитывается в кровь. Ячмень переваривается и поглощается гораздо медленнее.
    • содержание волокна: больше клетчатки пища, тем труднее это переварить. Как следствие сахар более медленно всасывается в кровь
    • спелость фруктов: зрелые плоды, больше сахара в нем и чем выше его гликемический индекс
    • содержание жира или кислоты: содержит больше жира или кислоты пищи, медленно перевариваются и медленно ее сахара всасываются в кровь
    • приготовление пищи: как готовится пища может повлиять на то как быстро всасывается в кровь. Как правило, приготовление пищи или измельчение пищи увеличивает его гликемический индекс, поскольку после процесса приготовления пищи их легче переваривать и усваивать.
    • другие факторы: процессы питания организма варьируется от человека к человеку, как быстро влияют углеводы на преобразование в сахар и всасывание. Насколько хорошо пережевана пища и как быстро глотается важно.

    Гликемический индекс некоторых продуктов

    Продукты Состав Индекс
    Фасоль Семена фасоли 33
    Чечевица красная 27
    Соя 14
    Хлеб Ржаной хлеб 49
    Белый 69
    Цельная пшеница 72
    Зерновые культуры Все отруби 54
    Кукурузные хлопья 83
    Овсяная каша 53
    Запыхаться риса 90
    Измельченные пшеница 70
    Молочные Молоко, мороженое и йогурт 34 – 38
    Фрукты Яблоко 38
    Банан 61
    Мандарин 43
    Апельсиновый сок 49
    Клубника 32
    Зерно Ячмень 22
    Коричневый рис 66
    Белый рис 72
    Макаронные изделия - 38
    Картофель Мгновенное пюре (через блендер) 86
    Пюре 72
    Сладкое пюре 50
    Закуски Кукурузные чипсы 72
    Печенье овсяное 57
    Картофельные чипсы 56
    Сахар Фруктоза 22
    Глюкоза 100
    Мед 91
    Сахар-рафинад 64

    Гликемический индекс важный параметр, потому что углеводы повышают сахар в крови, если быстро (с высоким гликемическим индексом) то увеличивается уровень инсулина. Увеличение инсулина может привести к низкому уровню сахара в крови (гипогликемия) и голоду, который, как правило, потребляет лишние калории и набирает вес.

    Углеводы с низким гликемическим индексом не сильно увеличивают уровень инсулина. В результате люди чувствуют себя сытыми дольше после еды. Потребление углеводов с низким гликемическим индексом также приводит к более здоровому уровню холестерина и снижает риск ожирения и диабета у людей с диабетом, риск осложнений из-за диабета.

    Несмотря на связь между продуктами с низким гликемическим индексом и улучшением здоровья, использование индекса для выбора продуктов не приводит автоматически к здоровому питанию.

    Например, высокий гликемический индекс у картофельных чипсов и некоторых конфет не выбор здорового питания, но некоторые пищевые продукты с высоким гликемическим индексом содержат ценные витамины и минералы.

    Таким образом, гликемический индекс следует использовать только в качестве общего руководства для выбора продуктов.

    Гликемическая нагрузка продуктов

    Гликемический индекс показывает, как быстро углеводы в пище всасываются в кровь. Он не включает количество углеводов в пище, которые имеют важное значение.

    Гликемическая нагрузка, относительно новый термин, включает гликемический индекс и количество углеводов в пище.

    Продукты питания, такие как морковь, бананы, арбуз или хлеб из муки грубого помола, могут иметь высокий гликемический индекс, но содержат сравнительно мало углеводов и, таким образом, у них низкая гликемическая нагрузка продуктов. Такие продукты имеют незначительное влияние на уровень сахара в крови.

    Белки в продуктах

    Белки состоят из структуры, называемой аминокислоты и образуют сложные образования. Поскольку белки являются сложными молекулами, организм занимает больше времени, чтобы впитать их. В результате они гораздо медленный и долгий источник энергии для организма человека, чем углеводы.

    Существуют 20 аминокислот. Организм человека синтезирует некоторые из компонентов в организме, но он не может синтезировать 9 аминокислот - называемые незаменимые аминокислоты. Они должны употребляться в рационе питания. Каждый нуждается в 8 из этих аминокислот: изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валина. Младенцы также нуждаются в 9 аминокислоте — гистидине.

    Процент белка, который организм может использовать для синтеза незаменимых аминокислот варьируется. Организм может использовать 100% белка в яйце и высокий процент из белков молока и мяса, но может использовать немного меньше половины белка из большинства овощей и зерновых.

    Организм любого млекопитающего нуждается в белке для обслуживания и замены тканей росте. Белок обычно не используется как источник энергии для организма человека. Однако если организм не получает достаточного количества калорий из других питательных веществ или из жира, хранящихся в организме, белок используется для энергии. Если больше белка чем необходимо, организм преобразует белок и сохраняет его компоненты как жир.

    Живое тело содержит большое количество белка. Белок, главный строительный блок в организме и является основным компонентом большинства клеток. Например, мышцы, соединительная ткань и кожа все построено из белка.

    Взрослые должны съесть около 60 граммов белка в день (1,5 грамм на килограмм веса или 10-15% от общего числа калорий).

    Взрослым, которые пытаются развить мышцы нужно немного больше. Детям также необходимо белка больше потому, что они растут.

    Жиры

    Жиры являются сложными молекулами, состоящими из жирных кислот и глицерина. Организм нуждается в жирах для роста и как источник энергии для организма. Жир также используется для синтеза гормонов и других веществ, необходимых для деятельности органа (например, простагландины).

    Жиры медленный источник энергии, но наиболее энергоэффективный вид пищи. Каждый грамм жира поставляет телу около 9 калорий, более чем вдвое больше, чем поставляемые белки или углеводы. Жиры — эффективная форма энергии и тело хранит излишки энергии как жир. Организм откладывает избыточный жир в брюшной полости (сальниковый жир) и под кожу (подкожный жир), чтобы использовать, когда требуется больше энергии. Тело может также изъять избыток жира из кровеносных сосудов и из органов, где он может блокировать поток крови и из поврежденных органов, что часто вызывает серьезные расстройства.

    Жирные кислоты

    Когда организм нуждается в жирных кислотах, он может сделать (синтезировать) некоторые из них. Некоторые кислоты, называемые незаменимые жирные кислоты, не могут быть синтезированы и должны потребляться в рационе питания.

    Незаменимые жирные кислоты составляют около 7% жира, потребляемого в нормальной диете и около 3% от общего количества калорий (около 8 грамм). Они включают линолевую и линоленовую кислоты, которые присутствуют в некоторых растительных маслах. Эйкозапентаеновая и докозагексаеновая кислоты, которые являются жирными кислотами необходимы для развития мозга и могут быть синтезированы из линолевой кислоты. Однако они также присутствуют в некоторых морских рыбных продуктах, которые являются более эффективным источником.

    Где находится жир?

    Тип жира

    Источник

    Мононенасыщенные Авокадо, оливковое масло

    Арахисовое масло

    Полиненасыщенные Рапс, кукуруза, соя, подсолнечник и многие другие жидкие растительные масла
    Насыщенные Мясо, особенно говядины

    Жирное молочные продукты, такие как цельное молоко, сливочное масло и сыр

    Кокосовое и пальмовое масла

    Искусственно гидрогенизированные растительные масла

    Омега-3 жирные кислоты Льняное семя

    Озерная форель и некоторых глубоководных рыб, таких как скумбрия, лосось, сельдь и тунец

    Зеленые листовые овощи

    Грецкие орехи

    Омега-6 жирные кислоты Растительные масла (в том числе подсолнечника, сафлора, кукуруза, хлопковое и соевого масла)

    Рыбий жир

    Яичные желтки

    Транс-жиры Коммерчески запеченные продукты, такие, как печенье, крекеры и пончики

    Картофель фри и другие жареные продукты

    Маргарин

    Картофельные чипсы

    Линолевая и арахидоновая кислоты состоят из омега-6 жирных кислот.

    Линоленовой кислота, эйкозапентаеновая и докозагексаеновая кислоты представляют омега-3 жирные кислоты.

    Питание, богатое омега-3 жирными кислотами может снизить риск атеросклероза (включая заболевание коронарной артерии). Озерная форель и некоторые глубоководные рыбы содержат большое количество Омега-3 жирных кислот.

    Необходимо потреблять достаточное количество омега-6 жирных кислот

    Виды жиров

    Существуют различные виды жиров

    • мононенасыщенные
    • полиненасыщенные
    • насыщенные

    Употребление насыщенных жиров увеличивает уровень холестерина и риск атеросклероза. Продукты, полученные от животных обычно содержат насыщенные жиры, которые, как правило, твердые при комнатной температуре. Жиры, полученных из растений обычно содержат мононенасыщенные или полиненасыщенные жирные кислоты, которые, как правило, жидкие при комнатной температуре. Исключением являются пальмовое и кокосовое масло. Они содержат больше насыщенных жиров, чем другие растительные масла.

    Транс-жиры (транс-жирные кислоты) — другая категория жира. Они искусственные и формируются путем добавления атомов водорода (гидрирования) мононенасыщенных или полиненасыщенных жирных кислот. Жиры могут полностью или частично быть гидрогенизированные (насыщенные атомами воды). Основным источником питания транс-жиров является частично гидрогенизированные растительные масла в коммерчески подготовленных продуктах. Потребление транс-жиров может негативно повлиять на уровень холестерина в организме и может способствовать риску атеросклероза.

    Жиры в питании

    • жир должен быть ограничен и составлять менее 30% от общего количества ежедневных калорий (или менее 90 грамм в день)
    • насыщенные жиры должны употребляться ограниченно до 10%.

    Когда потребление жиров сокращается до 10% или меньше от общего количества ежедневных калорий, уровень холестерина резко уменьшается.

    Углеводы, белки и жиры представляют основные источники энергии для человека необходимой для жизнедеятельности и их качество имеет важное значения для здоровья.