Как происходит терморегуляция. Терморегуляция человека: что это такое? Центры регуляции теплообмена


Тепловой гомеостаз является основным условием жизнедеятельности. Образование тепла неразрывно связано с энергетическим обменом. Фактором, обеспечивающим непрерывное течение метаболизма в органах и тканях, является определенная температура крови, которая поддерживается специализированными механизмами саморегуляции.

Человек относится к гомойотермным организмам, которые вырабатывают много тепла и отличаются относительным постоянством температуры тела, незначительно изменяющейся в течение суток. Человек может переносить температурные колебания внутренней среды в диапазоне от 25 до 43 0 С.

Температурный фактор определяет скорость протекания ферментативных процессов, всасывания, проведения возбуждения и мышечного сокращения.

Температура тела человека различна в поверхностных и глубоких участках. Внутренние части тела, составляющие примерно 50% его массы, называются «ядром ». Сюда относят мозг, внутренние органы и кровь. Температура «ядра» относительно стабильна. Например, температура крови правого предсердия и температура нижней трети пищевода вблизи сердца варьирует незначительно и составляет величину порядка 36,7-37 0 С. В разных участках «ядра» температурные колебания составляют от 0,2 до 1,2 0 С. Оценка температуры «ядра» проводится в определенных легко доступных участках тела, температура которых практически не отличается от температуры «ядра». Такими участками являются прямая кишка, полость рта и подмышечная впадина. При этом оральная (подъязычная) температура обычно ниже ректальной на 0,2-0,5 0 С, а аксиллярная (в области подмышечной ямки) – ниже ректальной на 0,5-0,8 0 С. При плотном прижатии руки к грудной клетке граница внутреннего слоя «ядра» почти доходит до подмышечной впадины, однако для достижения этого должно пройти не менее 10 минут. Для определения температуры ткани используют различные виды термометров, а также оптический метод – термовизиография.

«Оболочкой » называют поверхностный слой тела толщиной 2,5 см, который характеризуется весьма большими различиями температуры в разных участках. Кроме этого эта температура зависит от температуры внешней среды. В правой и левой половине «оболочки» иногда наблюдается ассиметрия температур. Средняя температура кожи обнаженного человека составляет (при комфортной внешней температуре) 33-34 0 С. При этом температура кожи стопы значительно ниже температуры проксимальных участков нижних конечностей и в еще большей степени – туловища и головы. Температура кожи в области стопы в комфортных условиях равна 24-28 0 С, а при изменении внешних условий – 13-53 0 С. Температура различных частей тела человека в условиях холода и тепла представлена на рисунке 1.

У большинства млекопитающих температура тела соответствует диапазону 36-39 0 С. Интенсивность метаболизма (теплопродукции) определяется как массой тела, так и величиной отдачи тепла с поверхности тела. В соответствии с этим у животных с небольшими размерами тела и с большим, чем у крупных животных, отношением площади поверхности к величине массы тела теплопродукция на 1 кг массы выше.

Температура тела человека колеблется в течение суток в диапазоне 0,3-1,5 0 С, чаще 1,0 0 С. Эти колебания основаны на эндогенном ритме, который определяется «биологическими часами» организма, синхронизированными в режиме «день-ночь». Отчетливо выражен ритм температурных колебаний синхронизированный с менструальным циклом. На ритм суточных температурных изменений накладываются и другие ритмы.

Температура тела определяется соотношением теплопродукции и теплоотдачи. Когда они не соответствуют друг другу, физиологическая система терморегуляции адаптивно меняет теплопродукцию или теплоотдачу. Тем самым обеспечивается относительная стабильность температуры внутренней среды организма. При изменениях температуры окружающей среды в пределах 21-53 0 С температура тела обнаженного человека может оставаться стабильной в течение нескольких минут.

Теплопродукция (химическая терморегуляция) – это способ поддержания температуры тела на оптимальном для метаболизма уровне, осуществляемый за счет изменения интенсивности метаболических экзотермических реакций, в ходе которых образуется тепло. Наибольшее количество тепла образуется в органах с интенсивным обменом веществ: печени, почках, эндокринных и пищеварительных железах, скелетных мышцах. Меньше тепла образуется в костях, хрящах и соединительной ткани. Прием пищи повышает интенсивность обменных процессов на 30%. Наиболее выраженное специфическое динамическое действие оказывают белки, затем углеводы и жиры. Химическая терморегуляция зависит от ряда факторов: индивидуальных особенностей организма, температуры окружающей среды, интенсивности мышечной работы, характера питания, эмоционального состояния, кислородного обеспечения организма, степени ультрафиолетового облучения, интенсивности видимого света. Различают сократительную и несократительную теплопродукцию.

Сократительная теплопродукция связана с произвольными и непроизвольными сокращениями мышц. Произвольные сокращения приводят к многократному увеличению теплообразования, при этом повышаются и теплопотери за счет усиления отдачи тепла конвекцией. То есть произвольные сокращения представляют собой слишком расточительный способ повышения теплопродукции. Непроизвольные сокращения мышц встречаются в двух вариантах: дрожи и терморегуляторного тонуса. Дрожь является экономным способом теплопродукции, так как этот тип сократительной двигательной активности обеспечивает переход всей энергии мышечного сокращения в тепловую энергию. Терморегуляторный тонус развивается в основном в области мышц спины и шеи. Теплопродукция при этом возрастает на 40-50%. Терморегуляторные тонические сокращения возникают при снижении температуры внешней среды на 2 0 С относительно уровня комфорта. Такие сокращения имеют характер зубчатого тетануса, близкого к режиму одиночных сокращений и являются более адаптивными, так как в этом случае при многократном периодическом действии холода формируются изменения тканевых структур – структурный след адаптации. Одним из проявлений таких структурно-адаптационных изменений является увеличение в скелетных мышцах количества красных (медленных) волокон, выполняющих в основном тоническую функцию.

Несократительная теплопродукция значительно выражена в адаптированном к холоду организме. Доля такого механизма в обеспечении прироста теплопродукции на холоде может составлять 50-70%. Развивается это явление в различных тканях, но специфическим субстратом является бурая жировая ткань. Эта ткань локализована у человека в области шеи, между лопаток, в средостении около аорты, крупных вен и симпатической цепочки. Количество бурой жировой ткани составляет 1-2% массы тела, но при адаптации может увеличиться до 5% массы тела. Скорость окисления жирных кислот в бурой жировой ткани в 20 раз превышает эту скорость в белой жировой ткани. При действии холода в этой ткани растут кровоток и уровень обмена веществ, увеличивается температура. Бурая жировая ткань обогревает близлежащие крупные кровеносные сосуды.

Теплоотдача (физическая терморегуляция) – это способ поддержания температуры тела путем отдачи тепла в окружающую среду. Теплоотдача осуществляется за счет физических процессов: теплопроведения, теплоизлучения, конвекции и испарения. Эффективным органом теплоотдачи является кожа благодаря наличию в ней большого количества потовых желез и артериоло-венулярных анастомозов. К поверхности тела потоки тепла переносятся в основном кровью. Кровоток значительно варьирует при изменении просвета сосудов, в частности, состояния артериоло-венулярных анастомозов. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды представлены на рисунке 2.

Конвекция – перемещение нагреваемого кожей слоя воздуха вверх и его замещение более холодным воздухом. Конвекция происходит в том случае, когда кожа теплее окружающего воздуха.

Проведение происходит в основном тогда, когда человек погружается в воду, температура которой ниже нейтральной (31-36 0 С). Ввиду того, что теплопроводность воды в 25 раз выше теплопроводности воздуха, кожа человека охлаждается в воде в 50-100 раз быстрее. Если температура воды близка к нулю, то через 1-3 часа может наступить смерть, так как тело человека охлаждается со скоростью 6 0 С в час. В воде теплоотдача происходит в несколько раз быстрее еще и потому, что кроме проведения в воде имеет место и конвекция. Увеличение содержания в организме жира ограничивает эффект теплоотдачи в воде путем конвекции.

Теплоизлучение обеспечивается инфракрасными лучами с длиной волны 5-20 мкм. Эти лучи испускаются кожей при наличии рядом находящихся предметов с более низкой температурой. Обнаженный человек может терять таким путем до 60% тепла.

Теплоиспарение составляет около 20% теплоотдачи тела человека в условиях комфортной температуры среды. Это единственный способ отдачи тепла в окружающую среду, если ее температура оказывается равной температуре тела. Путем испарения 1 л воды человек может отдать одну треть всего тепла, вырабатываемого в условиях покоя в течение суток. Существует два варианта испарения воды с поверхности тела: испарение пота в результате его выделения и испарение воды , оказавшейся на поверхности путем диффузии. Потоотделение – составная часть целостной реакции организма на тепловое воздействие. Испарение выделяющегося пота способствует потере тепла. Испарение воды путем диффузии происходит через слизистые оболочки дыхательных путей. Потери тепла, обусловленные дыханием, составляют 10-13% от общей теплоотдачи организма. Выделение тепла происходит также с мочой и калом.

Механизмы регуляции теплопродукции и теплоотдачи

Терморецепция осуществляется свободными окончаниями тонких сенсорных волокон типа А и С. Существуют терморецепторы центральные и периферические.

Кожные терморецепторы передают в центры терморегуляции сигналы об изменениях температуры среды, а также обеспечивают формирование температурных ощущений. Число Холодовых рецепторов кожи во много раз больше числа тепловых рецепторов. Холодовые рецепторы во внутренних органах и тканях также преобладают.

В центральной нервной системе – спинном и среднем мозге, а также в гипоталамусе – имеются центральные терморецепторы , которые называются термосенсорами . Центральные аппараты физиологической системы терморегуляции имеют большое число входных каналов. Так, термосенсоры могут возбуждаться при их непосредственном охлаждении или нагревании на 0,011 0 С и в результате изменять интенсивность как теплопродукции, так и теплоотдачи организма в целом.

Центр терморегуляции локализуется в гипоталамусе, в котором имеется три вида терморегуляторных нейронов:

1) афферентыне нейроны, принимающие сигналы от периферических и центральных терморецепторов;

2) вставочные;

3) эфферентные нейроны, контролирующие активность эффекторов системы терморегуляции.

От периферических терморецепторов информация поступает в медиальную преоптическую область переднего гипоталамуса . В его ядрах происходит сравнение полученных с периферии сигналов с активностью центральных терморецепторов, которые отражают температурное состояние мозга. Эти две информации интегрируются в заднем гипоталамусе . Полученные, в результате интеграции сигналы начинают управлять процессами теплопродукции и теплоотдачи. В заднем гипоталамусе также располагается моторный центр дрожи, связанный с моторными центрами спинного и продолговатого мозга. Терморецепторы кожи информируют ЦНС о повышении или понижении температуры окружающей среды еще до изменения температуры внутренней среды, при этом включаются терморегуляторные механизмы, которые предотвращают это отклонение. Такая регуляция носит название «регуляции по опережению». Моторный центр дрожи работает как «регулятор по отклонению» так как он возбуждается при снижении температуры тела даже на доли градусов. Кроме гипоталамуса в терморегуляции участвует кора больших полушарий. Она работает как «регулятор по опережению».

Регуляция теплопродукции осуществляется: во-первых, соматической нервной системой , которая запускает сократительные терморегуляторные реакции (дрожательные), во-вторых, симпатической нервной системой , которая активирует выделение из бурой жировой ткани норадреналина, включение в метаболические процессы свободных жирных кислот. Кроме этого симпатическая нервная система запускает выделение из коры надпочечников катехоламинов. В результате повышается выделение первичного тепла за счет рассогласования процессов окисления и фосфорилирования.

Регуляция теплоотдачи связана с активностью симпатической нервной системы. Её возбуждение приводит к сужению кровеносных сосудов кожи, а холинергические симпатические нейроны возбуждают потовые железы.

При снижении температуры «ядра» происходит активация холодовых гипоталамических, органных и сосудистых терморецепторов. В результате активизируется гипоталамический центр теплопродукции и снижается теплоотдача.

При повышении температуры внутренней среды организма активируются гипоталамические, сосудистые, кожные и органные теплорецепторы. Гипоталамический центр теплоотдачи активизируется, и процесс выработки тепла уменьшается, а теплоотдача увеличивается.

Адаптация к периодическим изменениям температуры, закаливание и здоровье

Температурная акклиматизация – это приспособление к многократным повышениям и снижениям температуры внешней среды. Она является целостной реакцией организма, которая развивается при участии практически всех систем организма.

При действии на организм холода повышение теплопродукции сочетается с постепенно развивающимся снижением КПД мышечных сокращений, в результате большая часть энергозатрат направлена на согревание тела. В результате повышается потребление кислорода, увеличивается легочная вентиляция и сократительная активность сердца, повышается АД. В крови увеличивается концентрация гемоглобина, в мышцах увеличивается количество миоглобина. Происходит перераспределение кровотока: он уменьшается на периферии и увеличивается в центре. Что может приводить к холодовому диурезу, вследствие снижения секреции альдостерона и АДГ.

Пластическая адаптация (толерантность) возникает при длительном действии холода (ныряльщики за жемчугом). Она связана с тем что, порог развития дрожи и повышение теплопродукции смещается в сторону более низких температур. При этом на уровне молекул, клеток и тканей появляются изменения, которые способствуют повышению устойчивости к изменениям температуры внутренней среды организма. Тогда функции организма меняются незначительно, хотя температура тела может быть ниже 36 0 .

У постоянных жителей тропических районов земного шара развивается, напротив, привыкание к теплу: температура тела этих людей повышена даже в покое, и увеличение теплоотдачи начинается у них при температуре тела на 0,50 более высокой, чем у жителей районов с умеренным климатом.

У людей, неоднократно по несколько месяцев работающих в условиях антарктических экспедиций, постепенно развиваются энергетически более экономные реакции, в частности, повышается регулирующая активность парасимпатической нервной системы.

На ранних этапах адаптации используются преимущественно генотипические механизмы, которые в экстремальных условиях избыточны и расточительны. В более поздние сроки резервы организма не только своевременно восстанавливаются, но и увеличиваются – развиваются фенотипические механизмы, которые являются более гибкими и экономными.

Рисунок 1. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды.



Вопрос №4

1) Тепловой баланс организма

Уравнение теплового баланса: M±QT ± QC ± QR – QE = 0

M - теплопродукция (количество тепла, которое выделяется в организме в сутки).

знак “+” если температура окружающей среды больше температура кожи.

знак “-” если температура кожи больше температура окружающей среды.

1. Теплопроводность - QT 2. Конвекция - QC 3. Излучение - QR 4. Испарение - QE

В организме любого живого существа непрерывно выделяется тепло. Это тепло должно отводится в окружающую среду, иначе организм перегреется и погибнет. Однако, и слишком быстрая отдача тепла опасна для организма – она приводит к переохлаждению. Поэтому важно в любых условиях обеспечить наиболее выгодный темп теплоотдачи. При этом необходимо учитывать, что теплообмен осуществляется целым рядом механизмов, с которыми врач должен быть хорошо знаком.

Основная часть тепла выделяется в мышцах и внутренних органах, отдача же тепла идёт с поверхности тела (с кожи). Ткани организма плохо проводят тепло, поэтому почти всё тепло переносится изнутри к поверхности с током крови. В коже и подкожной клетчатке находится большое количество кровеносных сосудов. Проходя по ним, кровь отдаёт тепло наружу.

2) Основные способы теплообмена организма.

    Теплопроводность – это перенос тепла за счёт усиления молекулярного движения в веществе.

Нетрудно получить формулу для переноса тепла путём теплопроводности. Пусть поток тепла идёт через слой вещества (ткань, стену и т.д.). (13)

Толщину слоя обозначим х, а площадь S. Слева температура равна Т 1 , а справа (пусть Т 1> Т 2 ). Очевидно, что количество тепла Q, прошедшее через слой за время t , прямо пропорционально разности температур, площади и времени и обратно пропорционально толщине слоя. Кроме того, надо учесть свойства вещества; для этого вводят коэффициент теплопроводности К.

    Конвекцией называют перенос тепла, связанный с движением газа или жидкости. Например, от каждого человека кверху поднимается поток тёплого воздуха, на место которого притекает со стороны холодный. То же происходит вокруг любого нагретого тела, например – батареи отопления. Такой тип теплопередачи называется естественной конвекцией ; для человека он не очень эффективен. Значительно больше тепла уносится при принудительной конвекции , когда движение воздуха создаётся внешней причиной (вентилятор, ветер). В этом случае конвекция может стать основной причиной потери тепла.

Количество тепла, теряемое телом за счёт конвекции можно также вычислить по формуле (13), но коэффициент к в этом случае будет зависеть, в первую очередь, от скорости движения воздуха.

    И злучение тоже играет существенную толь в теплоотдаче. В обычных комнатных условиях (в том числе, в учебной аудитории) люди путём излучения теряют до 60% тепла. Излучение человека лежит в области инфракрасных лучей (длины волн в диапазоне 3 – 20 микрометров).

Количество тепла, теряемое телом за счёт излучения, вычисляется по формуле:

Q ИЗЛ = σ ·( T 1 4 T 2 4 ). S . t (14).

Здесь σ = 5,6.10 –8 (в системе СИ; запоминать число не надо), Т 1 –температура поверхности тела, Т 2 – температура окружающих тел. Тут, однако, надо заметить следующее. Воздух почти прозрачен для инфракрасных лучей , поэтому за Т 2 надо брать не температуру воздуха в помещении, а температуру стен, а она может быть заметно ниже температуры воздуха. Например, вполне реальна ситуация, когда лежащий на столе термометр показывает больше 20 0 С (то есть температуру воздуха), а люди в помещении мёрзнут, потому что стены холодные.

При высокой наружной температуре на первый план выступает отдача тепла за счёт испарения . Когда наружная температура приближается к температуре тела, все рассмотренные ранее способы теплоотдачи не работают, потому что разность температур, от которой зависит перенос тепла, делается малой или даже может стать отрицательной.

Количество тепла, уносимое из организма за счёт испарения, можно подсчитать по формуле:

Q ИСП = L · m (15),

где m – масса испарившейся воды, L – удельная теплота испарения воды (2,25 . 10 6 Дж.кг –1 ; запоминать число не надо). У человека испарение, в основном, связано с потоотделением; кроме того, заметную роль играет испарение воды в лёгких. Надо подчеркнуть, что следует учитывать именно количество испарившейся воды, потому что далеко не весь пот фактически испаряется. Здесь очень большое значение имеет влажность воздуха и скорость его движения.

При умеренных и низких температурах испарение тоже уносит часть тепла (в основном, за счёт испарения в лёгких), но большее значение имеют конвекция и излучение.

3) Температурный гомеостаз.

Температура тела человека и многих животных поддерживается постоянной с достаточно высокой точностью. Это свойство организма называют температурным гомеостазом.

4) Способы терморегуляции.

Постоянство температуры тела обеспечивается выработавшейся в ходе эволюции системой терморегуляции. Различают химическую и физическую терморегуляцию.

Химическая терморегуляция основана на изменении скорости и характера биологического окисления. Например, при переохлаждении организма выделяются гормоны, ускоряющие окисление. Кроме того, происходит разобщение окисления и синтеза АТФ: на синтез АТФ идёт не 50% энергии, выделяющейся при окислении, а меньше. Соответственно, больший процент энергии превращается в тепло; организм согревается. Однако, изменение характера биологического окисления неблагоприятно сказывается на состоянии организма, поэтому, как правило, химическая терморегуляция включается лишь в экстремальных ситуациях.

Физическая терморегуляция (играющая в большинстве случаев основную роль) осуществляется за счёт изменения характера кровообращения. При понижении температуры тела сужаются артериолы и мелкие артерии в коже и подкожной клетчатке. Приток крови к поверхности тела уменьшается (это проявляется в том, что кожа белеет). Как следствие, уменьшается передача тепла от внутренних органов и мышц к поверхности тела и отдача тепла в окружающую среду. При повышении температуры тела сосуды расширяются (кожа краснеет), с усилением кровотока увеличивается теплоотдача. Например, в пальцах количество протекающей крови в зависимости от температуры может меняться в сотни раз! При повышении температуры существенное значение имеет также усиленное потоотделение.

Между человеком и окружающей его средой постоянно происходит теплообмен. Факторы окружающей среды воздействуют на организм комплексно, и в зависимости от их конкретных значений вегетативные центры (полосатое тело, серый бугор промежуточного мозга) и ретикулярная формация, взаимодействуя с корой головного мозга и посылая по симпатическим волокнам импульсы к мышцам, обеспечивают оптимальное соотношение процессов теплообразования и теплоотдачи.

Терморегуляцией организма называется совокупность физиологических и химических процессов, направленных на поддержание температуры тела в определенных пределах (36,1...37,2 °С). Перегрев тела или его переохлаждение приводит к опасным нарушениям жизненных функций, а в некоторых случаях — к заболеваниям. Терморегуляция обеспечивается изменением двух составляющих теплообмен процессов — теплопродукции и теплоотдачи. На тепловой баланс организма существенно влияет теплоотдача, как наиболее управляемая и изменчивая.

Теплота вырабатывается всем организмом, но более всего поперечнополосатыми мышцами и печенью. Теплообразование организма человека, одетого в домашнюю одежду и находящегося в состоянии относительного покоя при температуре воздуха 15...25°С, сохраняется приблизительно на одном и том же уровне. С понижением температуры оно увеличивается, а при ее повышении с 25 до 35 °С несколько уменьшается. При температуре более 40 °С выработка теплоты начинает увеличиваться. Эти данные свидетельствуют о том, что регуляция производства теплоты в организме главным образом происходит при пониженных температурах окружающей среды.

Теплопродукция возрастает при выполнении физической работы, причем тем больше, чем тяжелее работа. Количество вырабатываемой теплоты зависит также от возраста и состояния здоровья человека. Усредненные значения теплопродукции взрослого человека в зависимости от температуры окружающего воздуха и тяжести выполняемой работы приведены в таблице 14.3.

14.3. Теплопродукция человека в зависимости от температуры воздуха и тяжести выполняемой работы

Температура воздуха, "С

Теплопродукция, Дж/с

Температура воздуха, °С

Теплопродукция, Дж/с

Состояние покоя

Работа средней тяжести

Легкая работа

Тяжелая и очень тяжелая работа

Различают три вида теплоотдачи организма человека:

излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой);

конвекция (нагревание омывающего поверхность тела воздуха);

испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких.

Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы.

Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32. ..34, 5 °С) или наружных слоев одежды (27. ..28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде). Основная часть излучения относится к инфракрасному диапазону с длиной волны (4. ..50) * 10-6м. При этом теряемое организмом в единицу времени количество теплоты, Дж/с (1 Дж/с = 1 Вт),

Pp = Sδ(Tч4 - То4),

где S— площадь поверхности тела человека, определяемая по графику (рис. 14.1), м2. Если масса и рост человека неизвестны, то принимают S= 1,5м2; δ — приведенный коэффициент излучения, Вт/(м2*К4): для хлопчатобумажной ткани 5 = 4,2*10-8, для шерсти и шелка δ = 4,3*10 , для кожных покровов человека δ = 5,1*10-8; Тч — температура поверхности тела человека: для раздетого человека 306 К (это соответствует 33 °С); Тo — температура окружающей среды, К.

Рис. 14.1. График для определения площади поверхности тела человека в зависимости от его массы и роста


Теплоотдача конвекцией также происходит в случае, если температура поверхности кожи или верхних слоев одежды выше температуры омывающего их воздуха. При отсутствии ветра прилегающий к поверхности кожи раздетого человека слой воздуха толщиной 4...8 мм нагревается за счет его теплопроводности. Более отдаленные слои нагреваются вследствие естественного движения воздуха или принудительного побуждения. С увеличением скорости движения воздуха толщина окружающего человека пограничного слоя уменьшается до 1 мм, а теплоотдача поверхности тела возрастает в несколько раз. Потери теплоты конвекцией через дыхательные пути меньше, чем от кожного покрова, и происходят в тех случаях, когда температура вдыхаемого воздуха ниже температуры тела. Теплоотдача конвекцией повышается с ростом барометрического давления.

Приближенно потери теплоты в единицу времени конвекцией, Дж/с, можно определить по формуле

Pк1 = 7(0,5 + √v)S(Tч - То)

Рк2 = 8,4(0,273 + √v)S(Tч - То)

где v — скорость движения воздуха, м/с.

Первую формулу используют при скорости движения воздуха v ≤ 0,6 м/с, вторую — при v > 0,6 м/с.

Испарение — это теплоотдача при повышенной температуре воздуха, когда указанные ранее способы теплоотдачи затруднены или невозможны. В обычных условиях на большей части поверхности тела человека происходит неощутимое потоотделение, возникающее в результате диффузии воды без активного участия потовых желез. Исключение составляют поверхности ладоней, подошв и подмышечных впадин (составляющие примерно 10 % поверхности тела), на которых пот выделяется непрерывно.

В результате испарения организм в сутки теряет в среднем около 0,6 л воды. Так как на испарение 1 г воды затрачивается приблизительно 2,5 кДж теплоты, то потери ее за сутки составят приблизительно 1500кДж. С увеличением температуры воздуха и степени тяжести работы за счет более активного проникновения жидкости через стенки оплетающих потовые железы артериальных сосудов и нервной регуляции потоотделение усиливается, достигая за смену 5 л, а в некоторых случаях 10... 12 л. Отдача теплоты также возрастает.

При слишком интенсивном выделении пот не всегда успевает испариться и может выделяться в виде капель. В этом случае влажный слой на коже препятствует теплоотдаче, приводя в дальнейшем к перегреванию организма. Кроме влаги с потом человек теряет большое количество солей (в 1 л пота содержится 2,5...2,6 г хлорида натрия) и водорастворимых витаминов (С, BI, 62), что приводит к сгущению крови и ухудшению работы сердца. Следует отметить, что при потере количества воды, равного 1 % общей массы тела, у человека возникает чувство сильной жажды; утрата 5 % воды приводит к потере сознания, 10% — к смерти.

Количество выделяемого пота зависит и от индивидуальных особенностей организма, а также от степени его приспособляемости к данным климатическим условиям. На интенсивность испарения влаги влияют температура и скорость движения воздуха.

Через дыхательные пути испаряется около 300...350 г влаги в сутки, что приводит к потере 750...875 кДж теплоты.

Общие потери теплоты испарением в единицу времени, Дж/с, можно приближенно определить по формуле

Ри = 0,6547q(1 + kл), где q — интенсивность выделения пота, г/ч, определяемая взвешиванием человека; kл — коэффициент пересчета теплоотдачи через легкие, зависящий от температуры окружающего воздуха: при О "С kл = 0,43, при 18 °С — 0,3, при 28 °С — 0,23, при 35 °С - 0,035 и при 45°С kл = 0,015.

Для нормального протекания физиологических процессов в организме человека необходимо, чтобы выделяемая организмом теплота полностью отводилась в окружающую среду, так как функционирование организма требует протекания в нем химических и биохимических процессов в достаточно строгих температурных пределах (36,5 – 37,0 о С).

Условия, нарушающие тепловой баланс, вызывают в организме ответные реакции, способствующие его восстановлению за счет адаптивных и компенсаторных возможностей организма.

Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека в пределах 36 – 37 °С называются терморегуляцией.

Терморегуляция ─ физиологический процесс, находящийся под контролем центральной нервной системы .

Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим; за счет изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности обмена веществ (окислительных процессов) при перегревании или охлаждении организма.

Терморегуляция за счет изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (теплоносителя) от внутренних органов к поверхности тела, в результате сужения или расширения кровеносных сосудов в зависимости от температуры окружающей среды. Кровоснабжение при высокой температуре может быть в 20 – 30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться в 600 раз.

Терморегуляция изменением интенсивности выделения пота осуществляется изменением процесса теплоотдачи и в результате испарения выделяемого пота.

Терморегуляция организма осуществляется одновременно всеми способами, что исключает переохлаждение и перегрев организма, так как обеспечивает равновесие между количеством тепла, непрерывно образующимся в организме (химическая терморегуляция) и излишком тепла непрерывно отдаваемым в окружающую среду (физическая терморегуляция), т. е. сохраняется тепловой баланс организма.

Терморегуляцию (Q) можно представить следующим образом:

Q = M ± R ± C – E (1)

Поддержание постоянства температуры тела определяется теплопродукцией организма М, то есть процессами обмена веществ в клетках (переваривание пищи, сжигание запасов сахара и жира), производимой в результате физической активности (выполнения работы, энерготраты которой определяют категорию работы, непроизвольного дрожания мышц).

Теплоотдачей или теплоприходом R за счет инфракрасного излучения организмом в окружающее пространство или облучения инфракрасным потоком поверхности тела человека из этого пространства;



теплоотдачей или теплоприходом С путем конвекции, то есть через нагрев или охлаждение тела воздухом, омываемым поверхность тела;

теплоотдачей E, обусловленной испарением влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей, легких.

Изменение параметров микроклимата вызывает изменение процентного содержания величин, определяющих тепловой баланс организма человека.

В нормальных условиях при слабом движении воздуха человек в состоянии покоя теряет всей вырабатываемой организмом тепловой энергии в результате тепловой радиации около 45%; конвекцией до 30% и испарением до 25%.

При этом: свыше 80% тепла отдается через кожу, около 1 3% через органы дыхания, около 7% тепла расходуется на согревание принимаемой пищи, воды и вдыхаемого воздуха.

При повышении температуры наружного воздуха и тех же значениях относительной влажности испаряемость кожного покрова увеличивается в результате потоотделения с поверхности тела человека. Потоотделение играет важную роль в сохранении комфортного состояния человека. Так, при нормальных атмосферных условиях организм выделяет от 0,4 до 0,6 литра пота в сутки, а за 1 час потовыделения затрачивается 0,6ккал. При работе в условиях повышенной температуры и влажности теплоотдача организма затруднена.

Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются показатели микроклимата. В естественных условиях на поверхности Земли (уровень моря) они изменяются в существенных пределах. Так, температура окружающей среды изменяется от --88 до + 60 °С; подвижность воздуха -- от 0 до 60 м/с; относительная влажность -- от 10 до 100 % и атмосферное давление -- от 680 до 810 мм рт. ст.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру тела постоянной. Терморегуляция осуществляется в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем, называемая химической терморегуляцией, заключается в изменении теплопродукции в организме за счет регулирования скорости окислительных реакций. Изменение интенсивности кровообращения и потовыделения изменяет отдачу теплоты в окружающую среду и поэтому называется физической терморегуляцией.

Терморегуляция организма осуществляется одновременна всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность деятельности имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах:

Q к? 30 %; Q п? 50 %; Q тм? 20 %.

Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Установлено, что при температуре воздуха более 25 °С работоспособность человека начинает падать. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 11б°С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при t* gt; 30 °С, так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу. Вместе с потом организм теряет значительное количество минеральных солей, микроэлементов и водорастворимых витаминов (С, В 1 , В 2). При неблагоприятных условиях потеря жидкости может достигать 8... 10 л за смену и с ней до 40 г поваренной соли (всего в организме около 140 г NaCl). Потери более 30 г NaCl крайне опасны для организма человека, так как приводят к нарушению желудочной секреции, мышечным спазмам, судорогам. Компенсация потерь воды в организме человека при высоких температурах происходит за счет распада углеводов, жиров и белков.

Для восстановления водносолевого баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NaCl) газированной питьевой водой из расчета 4...5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня -- гипертермии -- состоянию, при котором температура тела поднимается до 38...39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, пульс и дыхание учащены. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

В горячих цехах промышленных предприятий большинство технологических процессов протекает при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. Инфракрасные лучи оказывают на организм человека в основном тепловое действие, при этом наступает нарушение деятельности сердечно - сосудистой и нервной систем. Лучи могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма -- гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха, увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия Превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.