Мультипликативная индексная двухфакторная модель. Основные приемы детерминированного факторного анализа


1. Факторная модель: Р = Z ´ N.

Тип модели: двухфакторная мультипликативная.

2. Способы факторного детерминированного анализа, применяемые для решения задач подобного типа:

Цепной подстановки;

Абсолютных разниц;

Простого прибавления неразложимого остатка;

Взвешенных конечных разниц;

Логарифмический;

Интегральный.

3. Аналитическая таблица для решения:

4. Расчет влияния факторов.

4.1. Применение способа цепной подстановки:

а) Р 1 = N 0 ´ Z 0 = 195 ´ 0,12 = 23,4 (т);

б) Р 2 = N 1 ´ Z 0 = 205 ´ 0,12 = 24,6 (т);

в) Р(N) = Р 2 – Р 1 = 24,6 – 23,4 = + 1,2 (т);

г) Р 3 = 205 ´ 0,11 = 22,55 (т);

д) Р(Z) = Р 3 – Р 2 = 22.55 – 24,6 = -2,05 (т);

е) Р = Р (N) + Р (Z) = 1,2 –2,05 = -0,85 (т).

4.2. Применение способа абсолютных разниц:

а) Р(N) = N ´ Z 0 = +10 ´ 0,12 = 1,2 (т);

б) Р( Z) = Z ´ N 1 = -0,01 ´ 205 = -2,05 (т);

в) Р = Р (N) + Р (Z) = 1,2 –2,05 = --0,85 (т).

4.3. Применение способа относительных разниц:

а) Р(Z) = (т);

б) Р(N) = (т);

в) Р (Z) + Р (N) = -1,94+1,09= --0,85 (т).

Совокупное влияние факторов рассчитанных способом цепной подстановки и абсолютных разниц:

4.4. Применение способа простого прибавления неразложимого остатка:

а) неразложимый остаток: N ´ Z = -0,01 ´ 10 = -0,1 (т);

б) Р 1 (N) = N ´ Z 0 + = 1,2 + (--0,1) = 1,15(т);

в) Р(Z) = Z ´ N 1 - = -2,05 - (-0,1) = -2 (т);

г) Р = Р (N) + Р (Z) =-0,85 (т).

4.5. Применение способа взвешенных конечных разностей:

а) Р(N) 1 = N ´ Z 0 = 1,2;

Р(N) 2 = N ´ Z 1 =+10 ´ 0,11 = 1,1 (т);

б) Р(Z) 1 = Z ´ N 0 = --0,01 ´ 195 = -1,95 (т);

Р(Z) 2 = Z ´ N 1 = - 0,01´ 205 =-2,05 (т);

Применение логарифмического способа

в) К N + К Z = -1,35+2,35 =1 ;

(-1,35)= +1,15;

(2,35)= -2;

Общее влияние +1,15 – 2 = - 0, 85.

Применение интегрального способа

а) (т)

б) (т)

Совокупное влияние факторов, рассчитанное способом взвешенных конечных разниц, простого прибавления неразложимого остатка, логарифмического и интегрального.

Применение указанных способов дает возможность получить уточненный результат расчетов.

5) Вывод: норма расхода сырья снизилась на 0,85 т при увеличении выпуска продукции, что потребовало дополнительного использования сырья в размере 1,15 т.

Снижение нормы расходы сырья способствовало экономии сырьевых ресурсов в размере 2,0 т. Влияние снижения нормы расходы превышает влияние увеличения производственной программы в 1,71 раза – удельный вес влияния нормы расхода превышает удельный вес влияния производственной программы в 1,73 раза ().

Более сильное влияние снижения нормы расхода по сравнению с увеличением используемого сырья в результате увеличения выпуска продукции явилось фактором экономии сырья в размере 0,85 т.

Примечание : Специфика данной ситуации в том, что знак «минус» влияния фактора – норма расхода не означает его отрицательного влияния на результирующий показатель, т.к. снижение расхода материальных ресурсов при увеличении производственной программы является показателем интенсивного развития производства.

ЗАДАЧИ

для самостоятельного решения

18. На основе приведенных данных:

Составить факторную модель зависимости расхода сырья от нормы расхода и производственной программы;

Сделать вывод.

19. Способом цепной подстановки и методом абсолютных разниц провести анализ расходов на инкассацию выручки.

21. Проанализировать всеми возможными способами влияния на товарооборот выработки и численности работников.

22. Проанализировать всеми возможными способами влияние на товарооборот площади торгового зала и нагрузки на 1 кв.м площади.

Периоды Товарооборот, тыс. руб., (N)
2,1
2,15

23 . Составить факторную модель зависимости товарооборота от среднего остатка оборотных средств и их оборачиваемости.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Товарооборот, тыс. руб., (N)
Средний остаток оборотных средств, тыс. руб., (С об) 156,4 162,5 228,4 226.5 44,5 48,6
Оборачиваемость (обор.), К об 8,6 8,4 12,1 12,8 4,9 5,2

24. Составить факторную модель зависимости выпуска продукции от фондоотдачи и средней стоимости основных средств.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Выпуск продукции, тыс. руб., (N)
Средняя стоимость основных средств, тыс. руб.,( ост) 538,0 564,2 565,6 265,8 268,4
Фондоотдача, 1,806 1,862 1,206 1,200 14,5 14,8

25. . Составить факторную модель зависимости рентабельности капитала от рентабельности продаж и коэффициента оборачиваемости капитала.

Определить влияние рентабельности продаж и коэффициента оборачиваемости капитала на рентабельность капитала всеми возможными способами.

26 . Составить и решить всеми возможными способами факторную модель зависимости фонда заработной платы от численности персонала и средней заработной платы одного работника.

27 . Определить влияние изменений в составе основных фондов и фондоотдачи активной части основных фондов на фондооотдачу основных фондов, используя следующую модель:

где - фондоотдача активной части основных фондов;

Доля активной части основных фондов в стоимости основных фондов.

РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧ

Они используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

2. Мультипликативные модели

Y=
.

Этот тип моделей применяется тогда, когда результативный показатель представляет собой произведение нескольких факторов.

3. Кратные модели

Y=.

Они применяются тогда, когда результативный показатель получают делением одного факторного показатели на величину другого.

4. Смешанные (комбинированные) модели - это сочетание в различных комбинациях предыдущих моделей:

Y=; Y=; Y=(a+b)c .

Преобразование факторных систем

1. Преобразование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители .

Например, при исследовании процесса формирования объема производства продукции (см.рис.6.1) можно применять такие детерминированные модели, как

ВП=КРГВ; ВП=КРДДВ, ВП=КРДПСВ.

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

2. Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его составные элементы-слагаемые .

Пример. Как известно, объем реализации продукции

VРП = VВП – VИ,

где VВП - объем производства;

VИ – объем внутрихозяйственного использования продукции.

В сельскохозяйственном предприятии зернопродукция использовалась в качестве семян (С) и кормов (К) Тогда приведенную исходную модель можно записать следующим образом: VП = VВП - (С + К).

3. К классу кратных моделей применяют следующие способы их преобразования:

    удлинения;

    формального разложения;

    расширения;

    сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей .

Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3) и объема выпуска продукции (VВП). Исходная модель этой факторной системы будет иметь вид

С=.

Если общую сумму затрат (3) заменить отдельными их элементами, такими, как оплата труда (ОТ), сырье и материалы (СМ), амортизация основных средств (А), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов

С=+++=X+ X+ X+ X,

где X– трудоемкость продукции; X– материалоемкость продукции; X– фондоемкость продукции; X– уровень накладных затрат

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей .

Если b=l+m+n+р , то

Y=
.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р):

Р=,

где /7 - сумма прибыли от реализации продукции;

3 - сумма затрат на производство и реализацию продукции.

Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид:

Р=
.

Себестоимость одного тонно-километра (С
) зависит от суммы затрат на содержание и эксплуатацию автомобиля (3) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид

С
=.

Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов:

С
=
.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель

ввести новый показатель с, то модель примет вид

.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (Д), то получим следующую модель годовой выработки:

ГВ=
,

где ДВ – среднедневная выработка; Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (Т) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П):

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель :

.

В данном случае получается конечная модель того же типа, что и исходная, однако с другим набором факторов.

Другой пример. Экономическая рентабельность активов предприятия (ROA) рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (A): ROA=П/A.

Если числитель и знаменатель разделим на объем продажи продукции (S), то получим кратную модель, но с новым набором факторов: рентабельности реализованной продукции и капиталоемкости продукции:

Результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также от профессиональных знаний и навыков исследователя. Процесс моделирования факторных систем - очень сложный и ответственный момент в экономическом анализе. От того, насколько реально и точно созданные модели отражают связь между исследуемыми показателями, зависят конечные результаты анализа .

Детерминированный факторный анализ – это методика исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. когда результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Факторы, включаемые в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями.

3. Каждые показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это означает, что в ней должна учитываться соразмерность измерений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

Типы факторных моделей встречающихся в детерминированном анализе:

Аддитивные модели, используются в случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей;

Мультипликативные модели, применяются, когда результативный показатель представляет собой произведение нескольких факторов;

Кратные модели, применяются, когда результативный показатель получают делением одного факторного показателя на величину другого;

Смешанные (комбинированные) модели – сочетание в различных комбинациях предыдущих моделей.

Основные приемы детерминированного факторного анализа и сфера их применения систематизированы в виде таблице 2.1.

Таблица 2.1 – Область применения основных приемов детерминированного факторного анализа

Методы элиминирования

Элиминировать– значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности. К методам элиминирования относятся способ цепной подстановки, индексный метод, способ абсолютных и способ относительных разниц.

Способ цепной подстановки. Данный способ является универсальным, так как используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет элиминироваться от влияния всех факторов, кроме одного, и определить взаимодействие последнего на прирост результативного показателя.

Рассмотрим алгоритм расчета способом цепной подстановки для различных моделей:

Мультипликативная модель

Двухфакторная мультипликативная модель (Y = a ´ b):

; ; .

.

Трехфакторная мультипликативная модель(Y = a ´ b ´ с):

; .

; ; ; .

Кратная модель

В кратных моделях (Y = a ÷ b) алгоритм расчета факторов на величину результативного показателя следующий:

; ;

.

Смешанные модели

Мультипликативно-аддитивного типа (Y = a ´ (b – c)):

; ;

; ;

; ;

; .

Кратно-аддитивного типа ():

;

; ;

; .

Используя способ цепной подстановки, рекомендуется придерживаться определенной последовательности расчетов: в первую очередь нужно учитывать изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого.

Индексный метод. Индексный метод основан на относительных показателях динамики, пространственных сравнений, выполнения плана, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в базисном периоде.

С помощью агрегатных индексов можно выявить влияние различных факторов на изменение уровня результативных показателей в мультипликативных и кратных моделях.

Рассмотрим алгоритм расчета индексного метода для мультипликативной модели.

; ; ; .

Способ абсолютных разниц. Как и способ цепной подстановки, данный способ применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: и . Особенно эффективно применяется данный способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Мультипликативная модель

Алгоритм расчета для мультипликативной факторной модели типа . Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Изменение величины результативного показателя за счет каждого фактора:

; .

Смешанные модели

Алгоритм расчета факторов этим способом в смешанных моделях типа :

; ; .

Способ относительных разниц применяется для изменения влияния факторов на прирост результативного показателя только в мультипликативных моделях и мультипликативно-аддитивных моделях: . Он значительно проще цепных подстановок, что при определенных обстоятельствах делает его очень эффективным. Это касается тех случаев, когда исходные данные содержат уже определенные ранее относительные приросты факторных показателей в процентах или коэффициентах.

Мультипликативная модель

Алгоритм расчета влияния факторов на величину результативного показателя для мультипликативных моделей типа (Y = a ´ b ´ с).

Сначала рассчитываются относительные отклонения факторных показателей:

; ; .

Изменение результативного показателя за счет каждого фактора определяется следующим образом:

Для выявления структуры временного ряда, т.е. определения количественных значений компонентов, составляющих уровней ряда, чаще всего используют аддитивную или мультипликативную модели временных рядов.

Мультипликативная модель. У=Т*S*E

T-трендовая компонента

S-сезонная компонента

E-случайная компонента

Мультипликативная модель используется в случае, если амплитуда сезонных колебаний увеличивается или уменьшается.

Алгоритм построения модели. Процесс построения модели включает в себя следующие шаги:

    Выравнивание уровней исходного ряда методом скользящей средней.

    Расчет значений сезонной компоненты S

    Устранение сезонной компоненты из исходного уровня ряда и получение выровненных данных без S

    Аналитическое выравнивание уровней ряда и расчет значений фактора Т

    Расчет полученных значений (Т* S) для каждого уровня ряда

    Расчет абсолютных или относительных ошибок модели.

(или 4.Определение тенденции временного ряда и уравнения тренда; 5.Расчет абсолютных или относительных ошибок модели.)

26 Выделение сезонной составляющей

Оценку сезонной компоненты можно найти как частное от деления фактических уровней ряда на центрированные скользящие средние.

Для начала необходимо найти средние за период (квартал, месяц) оценки сезонной компоненты Si . В моделях сезонной компоненты обычно предполагается что сезонные взаимодействия за период взаимопоглощаются.

В мультипликативной модели взаимопоглощаемость сезонных воздействий выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.

Выравнивание исходных уровней с помощью скользящей средней: а) Суммируются уровни ряда последовательно за каждый период времени за каждые 4 квартала со сдвигом на 1 момент времени и определяются условные годовые объемы потребления б) Разделим полученные суммы на 4, получим скользящие средние. Полученные выравненные значения не содержат сезонной компоненты. в) Приводим эти значения в соответствие с фактическими моментами времени для чего найдем среднее значение из 2-х скользящих средних – центрированные скользящие средние.

27.Коэффициент корреляции.

Для определения степени линейной связи рассчитывается коэфф-т корреляции.

Для определения нелинейной связи определяется индекс корреляции

, 0 1

Коэффициент детерминации: R 2 = 2 -для лин. связи. R 2 = 2 -для нелин. связи.

Показывает на сколько % изменения показателя у от своего среднего значения зависит от изменения фактора х от своего среднего значения. Чем ближе значение R² к 1, тем точнее модель.

Из всех полученных уравнений регрессии, лучшей является та, у которой коэф-т детерминации больший.

Если исследуется несколько факторов (больше2) то в этом случае рассчитывается множественный коэфф-т корреляции.R Y , X 1, X 2.. XN -множественный коэфф-т корреляции.

При анализе влияния нескольких факторов друг на друга определяется корреляционная матрица, которая состоит из всех возможных парных линейных коэфф-тов корреляции.

Корреляционная матрица:

Детерминированный факторный анализ в качестве цели выдвигает изучение влияния факторов на результативный показатель в случаях его функциональной зависимости от ряда факторных признаков.

Функциональную зависимость можно выразить различными моделями - аддитивной; мультипликативной; кратной; комбинированной (смешанной).

Аддитивную взаимосвязь можно представить как математическое управление, отражающее тот случай, когда результативный показатель (у) - это алгебраическая сумма нескольких факторных признаков:

Мультипликативная взаимосвязь отражает прямую пропорциональную зависимость исследуемого обобщающего показателя от факторов:

где П - общепринятый знак произведения нескольких сомножителей.

Кратная зависимость результативного показателя (у) от факторов математически отражается как частное от их деления:

Комбинированная (смешанная) взаимосвязь результативного и факторных показателей представляет собой сочетание в различных комбинациях аддитивной, мультипликативной и кратной зависимости:

где а, в, с и т.д. - переменные.

Известен ряд приемов моделирования факторных систем: прием расчленения; прием удлинения; прием расширения и прием сокращения исходных кратных двухфакторных систем типа: -. В результате процесса моделирования из двухфакторной кратной модели формируются аддитивно-кратные, мультипликативные и мультипликативно-кратные многофакторные системы типа:

Способы измерения влияния факторов в детерминированных моделях

Широкое распространение в аналитических расчетах получил способ цепной подстановки ввиду возможности использовать его в детерминированных моделях всех типов. Суть этого приема состоит в том, что для измерения влияния одного из факторов осуществляется замена его базового значения на фактическое, при этом остаются неизменными значения всех других факторов. Последующее сопоставление результативных показателей до и после замены анализируемого фактора дает возможность рассчитать его влияние на изменение результативного показателя. Математическое описание способа цепных подстановок при использовании его, например, в трехфакторных мультипликативных моделях выглядит следующим образом.

Трехфакторная мультипликативная система:

Последовательные подстановки:

Тогда для расчета влияния каждого из факторов надо выполнить такие действия:

Баланс отклонений:

Последовательность расчетов способом цепных подстановок рассмотрим на конкретном числовом примере, когда зависимость результативного показателя от факторных может быть представлена четырехфакторной мультипликативной моделью.

В качестве результативного показателя избрана стоимость реализованной продукции. Ставится цель исследовать изменение этого показателя под воздействием отклонений от базы сравнения ряда трудовых факторов - численности рабочих, целодневных и внут- рисменных потерь рабочего времени и среднечасовой выработки. Исходная информация приведена в табл. 15.1.

Таблица 15.1

Информация для факторного анализа изменения стоимости реализованной

продукции

Показатель

Обозначение

сравнения

Абсолютное

отклонение

Темп роста, %

Относительное отклонение, %-ных пунктов

1.Реализованная продукция, тыс. руб.

РП = N

2. Среднегодовая численность рабочих, чел.

3.Общее число отработанных рабочими чел./дней, тыс.

4.Общее число отработанных рабочими чел./ч, тыс.

5.Отработано за год одним рабочим днем (стр.З: стр.2)

6.Средняя продолжительность рабочего дня, ч (стр.4: стр.З)

7.Среднечасовая выработка, руб. (стр.1: стр.4)

8.Среднегодовая выработка одного рабочего, тыс. руб. (стр.1: стр.2)

Исходная четырехфакторная мультипликативная модель:

Цепные подстановки:

Расчеты влияния изменения факторных показателей приводятся ниже.

1. Изменение среднегодовой численности рабочих:

2. Изменение числа дней, отработанных одним рабочим:

3. Изменение средней продолжительности рабочего дня:

4. Изменение среднечасовой выработки:

Баланс отклонений:

Результаты расчетов способом цепных подстановок зависят от правильности определения соподчиненности факторов, от их классификации на количественные и качественные. Изменение количественных мультипликаторов должно проводиться раньше, чем качественных.

В мультипликативных и комбинированных (смешанных) моделях широко применяется способ абсолютных разниц, также основанный на приеме элиминирования и отличающийся простотой аналитических расчетов. Правило расчетов этим способом в мультипликативных моделях состоит в том, что отклонение (дельту) по анализируемому факторному показателю надо умножить на фактические значения мультипликаторов (сомножителей), расположенных слева от него, и на базовые значения тех, которые расположены справа от анализируемого фактора.

Порядок факторного анализа способом абсолютных разниц для комбинированных (смешанных) моделей рассмотрим с помощью математического описания. Исходная базисная и фактическая модели:

Алгоритм расчета влияния факторов способом абсолютных разниц:

Баланс отклонений:

Способ относительных разниц используется, так же как и способ абсолютных разниц, только в мультипликативных и комбинированных (смешанных) моделях.

Для мультипликативных моделей математическое описание названного приема будет следующим. Исходные базовая и фактическая четырехфакторные мультипликативные системы:

Для факторного анализа способом относительных разниц вначале надо определить относительные отклонения по каждому факторному показателю. Например, по первому фактору это будет процентное отношение его изменения к базе:

Затем для определения влияния изменения каждого фактора производятся такие расчеты.

Рассмотрим последовательность действий на числовом примере, исходная информация для которого содержится в табл. 15.1.

В гр. 7 табл. 15.1 отражены относительные отклонения по каждому факторному показателю.

Результаты влияния изменения каждого из факторов на отклонение результативного показателя от сравнения будут следующими:

Баланс отклонений: РП, -РП 0 =432 012-417 000 = +15 012 тыс. руб. (-9811,76) + 3854,62+ (-10 673,21) + 31 642,36 = 15 012,01 тыс. руб. Индексы представляют собой обобщающие показатели сравнения во времени и в пространстве. Они отражают процентное изменение изучаемого явления за какой-то период времени по сравнению с базисным периодом. Такая информация дает возможность сравнить изменения различных факторов и проанализировать их поведение.

В факторном анализе индексный метод используется в мультипликативных и кратных моделях.

Обратимся к его использованию для анализа кратных моделей. Так, агрегатный индекс физического объема продаж (J g) имеет вид:

где q - индексируемая величина количества; р 0 - соизмеритель (вес), цена, зафиксированная на уровне базисного периода.

Разница между числителем и знаменателем в этом индексе отражает изменение товарооборота за счет изменения его физического объема.

Агрегатный индекс цен (формула) Пааше записывается таким образом:

Используя информацию, содержащуюся в табл. 15.1, рассчитаем влияние изменения индекса среднесписочной численности рабочих и индекса среднегодовой выработки одного рабочего на темп роста реализованной продукции.

Производительность труда (ПТ) одного рабочего в базовом году равна 245,29 млн руб., а в отчетном - 260,25 млн руб. Индекс роста (/ пт) составит 1,0610 (260,25: 245,29).

Индексы роста реализованной продукции (/ рп) и среднегодовой численности рабочих (/ сч) по данным табл. 15.1- соответственно:

Взаимосвязь трех указанных индексов можно представить в виде двухфакторной мультипликативной модели:

Факторный анализ способом абсолютных разниц дает такие итоги.

1. Влияние изменения индекса среднесписочной численности рабочих:

2. Влияние изменения индекса производительности труда:

Баланс отклонений: 1,0360 - 1,0 = +0,0360 или (-0,0235) + 0,0596= + 0,0361 100 = 3,61%.

Интегральный способ применяется в детерминированном факторном анализе в мультипликативных, кратных и комбинированных моделях.

Этот метод позволяет разложить дополнительный прирост результативного показателя в связи с взаимодействием факторов между ними.

Практическое использование интегрального метода базируется на специально разработанных рабочих алгоритмах для соответствующих факторных моделей. Например, для двухфакторной мультипликативной модели = а в) алгоритм будет таким:

В качестве примера используем двухфакторную зависимость реализованной продукции (РП) от изменения среднегодовой численности рабочих (СЧ) и их среднегодовой выработки (ПТ):

Исходная информация имеется в табл. 15.1.

Влияние изменения среднегодовой численности:

Влияние изменения производительности труда (среднегодовой выработки одного рабочего):

Баланс отклонений:

В факторном анализе в аддитивных моделях комбинированного (смешанного) типа может использования способ пропорционального деления. Алгоритм расчета влияния факторов на изменение результативного показателя для аддитивной системы типа у = а + в + с будет таким:

В комбинированных моделях расчет влияния факторов второго уровня может быть выполнен способом долевого участия. Вначале рассчитывается доля каждого фактора в общей сумме их изменений, а затем эта доля умножается на общее отклонение результативного показателя. Алгоритм расчета такой:

Систематизируем рассмотренные способы расчетов влияния отдельных факторов в детерминированном факторном анализе с использованием схемы (рис. 15.4).