Появились новые доказательства в поддержку альтернативной теории гравитации. Теория гравитации

По мере развития квантовой физики учёные узнают больше о чёрных дырах, тёмной материи, тёмной энергии и других космических явлениях. Новые открытия всё труднее вписываются в понятие гравитации.

Ниже приводятся альтернативные взгляды на гравитацию девяти учёных.

1. Томас Таунсенд Браун и устройство, бросающее вызов гравитации

Физик Томас Таунсенд Браун (1905-1985 гг.) проводил исследования для американского военно-морского флота и министерства обороны. Позднее он работал консультантом в авиационной промышленности.

Он создал устройство, которое было запатентовано под названием «гравитатор». По его словам, его изобретение опровергало гравитацию, и некоторые учёные согласны с этим утверждением. Под влиянием высоковольтного заряда оно двигалось таким образом, что это невозможно объяснить, исходя из современного понимания гравитации.

В заявке на патент Браун написал, что гравиатор действует в состоянии покоя по отношению к Вселенной. Это противоречит специальной теории относительности Альберта Эйнштейна, согласно которой сила должна действовать одинаково по отношению к любой системе отчёта. Гравитатор также опровергал третий закон Ньютона, гласящий, что любому действию есть равное и противоположное противодействие.

В 1930 г. полковник Эдвард Дидс писал: «Часть учёных видели гравитатор, и они были поражены его действием, честно сказав, что движения гравитатора совершенно невозможно объяснить известными законами физики».

Некоторые говорили, что движения гравитатора управляются ионным ветром, то есть ионизированные частицы создают силу. Пол А. ЛаВиолетт был среди тех, которые не согласились с подобным объяснением.

«Измерения силы тяги показали, что сила, поднимающая электрифицированный диск Брауна, почти в 100 миллионов раз больше, чем мог бы создать ионный ветер», - писал ЛаВиолетт в своей книге «Секреты антигравитационного движения».

2. Пол А. ЛаВиолетт: Правительство секретно строит антигравитационный корабль?

ЛаВиолетт получил степень доктора в Университете Портланда, в настоящее время он является президентом Starburst Foundation, научно-исследовательского института в междисциплинарных областях. Он пишет в своей книге: «На протяжении нескольких прошедших десятилетий по засекреченным аэрокосмическим программам в США и других странах занимались созданием летательного аппарата, способного преодолеть гравитацию. Эти экзотические технологии относятся к сравнительно мало известной области исследований под названием электрогравитика».

ЛаВиолетт проследил развитие этой отрасли, начиная с эпохи Теслы и заканчивая Брауном в первой половине XX века. Согласно теориям Брауна, электростатическое и гравитационное поля объединены, объясняет ЛаВиолетт.

Электрогравитационный эффект игнорируется, потому что «подобный феномен не предполагается классической электростатикой или общей теорией относительности, пишет ЛаВиолетт.

3. NASA о тёмной материи

На этом изображении показано распределение тёмной материи, галактик и горячего газа в центре скопления галактик Abell 520, образовавшегося в результате массивного столкновения галактик. Фото: NASA, ESA, CFHT, CXO, M.J. Jee at the University of California, and A. Mahdavi at San Francisco State University

Учёные знают, что Вселенная расширяется с возрастающей скоростью. Они полагают, что причиной этого расширения является тёмная материя, но не знают точно, что она из себя представляет. Предполагается, что она может опровергнуть теорию гравитации Эйнштейна.

В докладе NASA о тёмной материи говорится, что существует вероятность, что «теория Эйнштейна о гравитации неверна».

«Она не только влияет на расширение Вселенной, но и определяет поведение обычной материи в галактиках и скоплениях галактик, - говорится в отчёте. - Возможно, новая теория гравитации могла бы стать решением проблемы чёрной материи. Мы можем наблюдать, как галактики образуют скопления. Но если окажется, что необходима новая теория гравитации, неизвестно, какой вид она примет».

4. Том ванн Фландерн о проблеме скорости гравитации

Том ван Фландерн (1940-2009) получил степень доктора астрономии в Йельском университете в 1969 г. Он не полностью отвергал общую теорию относительности, однако считал, что в ней есть проблемы. Теория Эйнштейна, скорее, была «неполной, нежели ошибочной», написал он в статье «Скорость гравитации. Что говорят эксперименты?», опубликованной в Physics Letter A в 1998 г.

Он затронул вопрос о скорости гравитации. В классической теории тяготения Ньютона скорость гравитации не определена. А в общей теории относительности гравитация имеет скорость света, объясняет Ван Фландерн. Он говорит, что в академических кругах предпочитают обходить это противоречие.

«Точно такая же дилемма возникает во многих вопросах, - пишет он. - Почему фотоны от солнца движутся в направлении, которое не параллельно направлению гравитационного ускорения Земли по отношению к Солнцу? Почему полное затмение Солнца Луной достигает пика до выравнивания гравитационных сил Солнца и Луны? Каким образом двойные пульсары предугадывают своё будущее положение, скорость и ускорение быстрее, чем позволяет световое время между ними? Почему чёрные дыры обладают гравитацией, несмотря на то, что ничто не может преодолеть их, потому что для этого потребовалась бы скорость выше скорости света?»

5. Вильян Х. Кантрелл: теория Эйнштейна не выходит за пределы логического круга

Д-р. Вильям Х. Кантрелл - член технического персонала в лаборатории Линкольна Массачусетского технологического института. В прошлом он занимал должность адъюнкт-профессора на факультете электронной инженерии Техасского университета.

Он изложил нетрадиционный взгляд на теорию относительности в журнале Infinite Energy, публикуемом некоммерческой организацией New Energy Foundation (NEF).

Кантрелл пишет: «Теория относительности оказала огромное влияние на физику XX века, это неоспоримый факт. Теорией Эйнштейна восхищаются во всём мире за блестящие открытия, к которым она привела. Тем не менее, существуют группы учёных-диссидентов, которые открыто отвергают её, и ещё большие группы исследователей, которые испытывают к ней неприязнь, хотя и не в курсе альтернативных подходов».

«Причина этой неприязни состоит в том, что Эйнштейн заимствовал математику Лоренца и Пуанкаре, и это позволило ему модифицировать систему измерения длины и времени, заставив скорость света быть постоянной для всех наблюдателей».

«В такой ситуации рациональные мыслители должны были бы броситься на поиски альтернативных идей. Но зачем пытаться опровергнуть настолько успешную теорию? Ну, во-первых, для того, чтобы понять и описать, как же на самом деле работает природа. А во-вторых, чтобы совершить новый прорыв, после того, как непредумышленный барьер убран».

Кантрелл и подобные ему учёные считают, что теория Эйнштейна не выходит за пределы логического круга. Он пояснил это следующим примером: «Некто может выдвинуть гипотезу, что у Земли есть вторая Луна, сделанная из специального зелёного сыра, который прозрачен для освещения».

«Разумеется, это звучит как глупость, однако это утверждение невозможно опровергнуть опытным путём. С теорией относительности Эйнштейна та же самая проблема».

6. Руджеро Мария Сантилли: теория относительности противоречит квантовой электродинамике

Руджеро Мария Сантилли обучался в университетах Неаполя и Турина, он работал приглашённым преподавателем в Гарварде, затем основал институт теоретических исследований. Сантилли приводит девять несоответствий между общей теорией относительности Эйнштейна и теперешними научными знаниями. Некоторые из них создают проблемы для классического понимания гравитации.

Одно из главных противоречий в том, что объяснение Эйнштейна гравитации не согласуется с квантовой электродинамикой, пишет Сантилли в своём докладе 2006 г. «Девять теорем о несоответствии общей теории относительности».

«Следует помнить о том, что квантовая электродинамика - это одна из самых значительных и экспериментально доказанных научных теорий в истории. Очевидно, что широко распространённая точка зрения, рассматривающая взгляд Эйнштейна на гравитацию как окончательный - это ненаучный подход», - пишет он.

В журнале публикуются статьи, которые ставят под сомнение общую и специальную теорию относительности Эйнштейна. Редакционная политика журнала сформулирована следующим образом: «Журнал уделяет внимание докладам, которые подтверждают, что теории Эйнштейна чрезмерно усложнены, подтверждены только в узких областях физики и ведут к логическим противоречиям».

Том Бэтхэлл

Том Бэтхэлл не учёный, но он исследовал альтернативные теории, будучи старшим редактором журнала American Spectator. В статье «Переосмысление относительности» он пишет: «При выборе приемлемых теорий часто главным критерием служит простота. Птолемеева система мира в усложнённом варианте может точно предсказать положение планет. Однако гелиоцентрическая система мира намного проще, поэтому мы предпочитаем её».

Он цитировал Клиффорда М. Вилла из Вашингтонского университета, ведущего сторонника относительности. «Сложно представить жизнь без специальной теории относительности… Просто представьте все явления в нашем мире, в которых она занимает большое место. Атомная энергия, знаменитое уравнение E=mc2, показывающее, как масса преобразуется в колоссальное количество энергии».

Бэтхэлл говорит о том, что ограничения «играют свою роль». Бэтхэлл пишет: «Если новая теория будет выглядеть „незаменимой“, её сразу же окрестят ошибочной».

7. Джозеф Полчински: сомнения и вопросы

Джозеф Полчински. Фото: Lubos Motl

Джозеф Полчински, физик-теоретик института теоретической физики Кавли Калифорнийского университета в Санта-Барбаре, обсуждает идею гравитации и в связи с чёрными дырами. Согласно теории Эйнтейна, чёрные дыры должны иметь огромную силу притяжения.

Знаменитый учёный Стивен Хокинг заявил в 70-е годы, что материя может просачиваться из чёрных дыр, что является парадоксом.

Как упоминалось в первой части статьи, ван Фландерн задавался вопросом: «Каким образом чёрные дыры обладают гравитацией, несмотря на то, что ничто не может преодолеть их, потому что для этого потребовалась бы скорость выше скорости света?».

Полчински заявил PBS после того, как Хокинг обсудил некоторые новые теории о чёрных дырах: «Возможно, что некоторые наши взгляды о квантовой механике и гравитации ошибочны, и мы пытаемся выяснить, какие именно».

«Это затруднение, но мы надеемся, что это затруднение позволит нам продвинуться вперёд», - сказал он.

8.Эрик Верлинде: теория «день неправильных волос»

Профессор Эрик Верлинде - физик-теоретик в области теории струн и профессор института теоретической физики при Амстердамском университете.

Он рассматривает гравитацию как следствие законов термодинамики и влияния таких факторов как температура, давление и структура. Восприятие гравитации, например, яблоко, падающее с дерева, связано со свойством природы максимизировать беспорядок.

Статья New York Times 2010 г. описывает его идею как теорию «дня неправильных волос». Волосы становятся кудрявыми при жаре и влажности, для волос существует больше возможностей сделать волосы кудрявыми, чем сделать их прямыми, и природа любит вариации. Схожие принципы действуют и при распределении объектов в космосе, считает Верлинде.

«Мы уже давно знаем, что гравитации не существует, - заявил Верлинде в интервью New York Times. - Пришло время объявить об этом во всеуслышание».

9. Хуан Малдасена: «Теорию Эйнштейна следует заменить чем-то квантомеханическим»

Хуан Малдасена. Фото: Wikimedia Commons

В 1997 г. физик-теоретик Хуан Малдасена, который в настоящее время занимает должность профессора в принстонском Институте передовых исследований, разработал теорию, которая рассматривает Вселенную как совокупность очень тонких вибрирующих струн. Именно эти струны и создают гравитацию. Струны представляют собой своего рода голограмму, проецируемую из более низкоразмерной космической системы, которая проще, более плоская и не имеет гравитации.

В интервью, размещённом на образовательном ресурсе Learner.org, Малдасена сказал: «Мы считаем, что общую теорию относительности Эйнштейна следует заменять чем-то квантомеханическим, когда затрагиваются такие темы, как начало Большого Взрыва, или строение чёрных дыр, где распад материи происходят в очень маленькой области времени-пространства, и вещи, происходящие там, нельзя описывать, используя классические теории. В таких случаях следует использовать квантовую механику. Теория струн находятся в процессе развития, она была создана для описания квантомеханического времени-пространства».

*Фотография man jumping rope от Shutterstock

Версия на английском

Установили бы Вы себе на телефон приложение для чтения статей сайта epochtimes?

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

Гравитации появилась как наука о притяжении тел. До первой половины 20 века все теория гравитации опиралась лишь на законы Ньютона. Иногда ее так и называют – Ньютоновская гравитация. На момент начала 20 века накопилось не мало экспериментальных и теоретических фактов, свидетельствующих о неточности гравитации Ньютона.

К экспериментальным фактам относится например сдвиг перегелия орбиты Меркурия. Известно, что орбита вращения Меркурия вокруг солнца представляет собой эллипс, ближайшую к солнцу точку которого называется перегелий. Это эллипс не стоит на месте, а медленно поворачивается, изменяя тем самым положение перегелия. Как обнаружили в началу 20 века эксперименты - перегелий движется быстрее, чем предсказывают законы Ньютона.

К теоретическим неточностям можно отнести следующий факт. Как известно, хорошей инерциальной системой отсчета является свободно падающий лифт. Все процессы во всех свободно падающих лифтах идут одинаково. Однако представим себе два падающих лифта. Один, например в африке, п другой в южной америке. Лба лифта будут инерциальными системами отсчета, однако относительно друг друга они будут двигаться с ускорением. Этот факт противоречит первому закону Ньютона.

Кроме того, теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с специальной теорией относительности. В этой теории никакая информация не может распространиться быстрее скорости света в вакууме.

В 1920х годах Эйнштей предложил совершенно новую теорию гравитации. В рамках этой теории постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени , которая связана, в частности, с присутствием массы-энергии.

Сделаем небольшое отступление. Согласно теории Эйншейна масса и энергия представляют собой один и тот-же параметр тела. Связь между массой и энергией дает простой формулой E = m c^2. Как известно из СТО (здесь ссылка) масса тела увеличивается, если ему сообщают кинетическую энергию. Эффект становится заметен, если скорость тела приближается к скорость света. Аналогичный эффект будет, например, при нагревании тела. Однако из-за большого параметра с = 300000 км/с заметить такой эффект довольно трудно. При дальнейшем описании мы постараемся избежать сходным математических формулировок.

Итак, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчета равно нулю. Траектории тел тогда будут так называемые геодезические линии. Точное определение геодезической линии довольно сложное. Скажем лишь что для плоского пространства, геодезическая линия это просто прямая. Геодезическая линия, например, для земли в солнечной системе представляет собой эллипс – это и есть земная орбита.

Попытаемся наглядно описать механизм взаимодействия двух массивных тел. Легче всего это сделать в двумерном случае (а не в 4 мерным, как на самом деле). В качестве массивных тел будем представлять собой тяжелые шарики, а в качестве пространства, которое искривляется, если в него помещают массивные тела можно взять мягкий резиновый коврик. Напомним, что это только модель для наглядного представления Эйнштейновской гравитации. Поместим шарик на коврик, под весом этого шарика коврик немного прогнется. Образовавшаяся ямка является моделью искривленного пространства. Если рядом поместить второй шарик то он как-бы начнем притягиваться к первому за счет того, что первый находится как-бы в ямке.

Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение обусловлено кривизной мембраны.

Теория Эйнштейна не дает ответ на то, почему массивные тела искривляют пространство. А также почему тела движется именно по геодезическим линиями. Все это является лишь предположением, и как говорится в самой теории все это свойства самого пространства в котором мы живем. Однако уравнения теории гравитации Эйнштейна дают, на сегодняшний момент, самую точную картину движения объектов во вселенной.

Полезно привести уравнение гравитации Эйнштейна.

Справа В этом уравнении стоит так называемый тензор энергии-импульса. Именно он описываем массу и энергию вещества в данной точке пространства. Слева стоит два слагаемых, первое это тензор Эйнштейна – величина описывающая кривизна пространства. Таким образом, это уравнение и дает связь между, массой тел в пространстве и кривизной этого самого пространства.

В левой части уравнения находится еще один член – это так называемый лямда член. Именно этот член вызывает самые большие споры ученых. Исторические факты говорят о том, что Эйнштейн приписал этот член в уравнение в последний момент – когда все расчеты уже были произведены, и совершенно неизвестны причины почему этот этот член должен быть добавлен в уравнение. Дело в том что этот член, по смыслу, отвечает за свойство самого пространства. А именно за то, что пространства, независимо от помещенных в него тел, будет ускоренно расширяться. Ускорение, с которым расширяется пространство очень мало, и померить экспериментально его черезвычайно трудно.


Созданная Эйнштейном общая теория относительности дает общепризнанное объяснение гравитации. Однако у ОТО есть ряд проблем, которые заставляют искать альтернативные теории гравитации. Фактически сложилась ситуация, что в сфере теории гравитации наука разделена на два клана, которые практически не взаимодействуют друг с другом. О том, как структурирует мир релятивистская теория гравитации, видоизменяя законы общей теории относительности, - академик РАН Анатолий Логунов. 21.01.2003 (хр.00:46:00)

Рабочие материалы

Обзор темы:

Альтернативные теории гравитации. Классическая теория гравитации, выраженная законом всемирного тяготения Ньютона, оказалась не вполне точной в случае в случае сильных гравитационных полей. Это, впрочем, ничуть не мешает использовать ее в тех случаях, когда ее точности хватает.

Созданная в 1915 г. Альбертом Эйнштейном общая теория относительности (ОТО) является на сегодня общепризнанной теорией тяготения. Однако у нее есть ряд проблем, которые заставляют искать альтернативные теории гравитации.

Одна из основных проблем состоит в том, что в классическом виде ОТО несовместима с квантовыми теориями поля, которые описывают остальные три фундаментальные физические взаимодействия. (Правда, в самое последнее время стали поступать сообщения, что на этом направлении достигнуты определенные успехи.)

Другая проблема состоит в том, что, описывая гравитацию как искривление пространства-времени, ОТО отказывается от свойства однородности пространства-времени, а ведь именно на этом свойстве основываются законы сохранения энергии и импульса.

Третья проблема ОТО, также связана с энергией, на этот раз с энергией самого гравитационного поля. Чтобы разобраться, в чем дело, рассмотрим сначала электромагнитное поле. Будучи физическим полем, оно само по себе несет энергию и импульс. Причем энергия поля, запасенная в каждом элементарном объеме пространства, пропорциональна квадрату напряженности поля. Выбором системы отсчета можно изменить величины электрического и магнитного полей в выбранной точке пространства. Например, выбрав систему отсчета, движущуюся вместе с зарядом, можно свести к нулю его магнитное поле. Однако никаким выбором системы отсчета нельзя полностью уничтожить электромагнитное поле в точке, где с точки зрения другой системы отсчета оно не равно нулю. Вернемся к гравитационному полю. В основаниях ОТО лежит мысленный эксперимент с лифтом, падающим в гравитационном поле. Утверждается, что наблюдатель, находящийся в лифте, не сможет отличить падение в гравитационном поле от пребывания вне каких-либо полей. То есть в системе отсчета свободно падающего наблюдателя гравитационное поле полностью аннулируется. Отсюда следует, что гравитационное поле ОТО не является обычным физическим полем, имеющим определенную плотность энергии в пространстве. Выбор системы отсчета может менять пространственное распределение его энергии. В этом смысле говорят о нелокальности энергии гравитационного поля в ОТО. Многие специалисты в области астрофизики считают это существенным недостатком ОТО. В то же время многие специалисты по ОТО вообще отвергают эту претензию.

Наконец, может быть, самой большой претензией к ОТО считают то, что она допускает возникновение черных дыр, в центре которых находится физическая сингулярность. Большинство физиков убеждены, что появление бесконечностей в физической теории означает выход за границы ее применимости.

То что, перечисленные проблемы, требуют решения, очевидно всем. Разные группы специалистов пытаются идти в этом деле различными путями. Однако всех их можно условно разделить на две группы - тех, кто продолжает поиски в русле геометрического подхода, положенного в основу ОТО, и тех, кто отказывается увязывать гравитационное поле с геометрией пространства-времени.

Поскольку первое направление более широко представлено в современном научном сообществе, теории, создаваемые на втором пути собирательно называют альтернативными теориями гравитации. К числу наиболее известных альтернативных теорий гравитации относится релятивистская теория гравитации (РТГ) А. А. Логунова. В Санкт-Петербургском универтисете Ю. В. Барышев разрабатывает полевую теорию гравитации (ПТГ).

К сожалению, в сфере теории гравитации в последние годы складывается довольно нездоровая ситуация. Исследователи, продолжающие работать в русле ОТО, практически игнорируют работы в сфере альтернативных теорий гравитации, мотивируя это тем, что пока все наблюдаемые факты удается объяснить на базе ОТО. Тем временем их работы все более уходят в сферу чистой математики и становятся все менее доступны для экспериментальной проверки.

Вероятно, это связано с тем, что до самого недавнего времени наблюдения не позволяли сделать выбор между различными версиями теорий гравитации. Классические релятивистские эффекты, такие как искривление световых лучей в поле тяготения Солнца или смещение перигелия Меркурия все эти теории описывают одинаково и в первом приближении так же, как ОТО. Различия наступают в более сильных полях. А наблюдение их проявлений становится возможным только в наши дни.

Один из наиболее перспективных объектов для проверки нового поколения теорий гравитации - это знаменитый пульсар PSR1913+30. В этой тесной паре, состоящей из двух нейтронных звезд, должны быть очень существенные потери энергии на излучение гравитационных волн. Причем, разные теории гравитации предсказывают разный темп потери энергии. В течение ближайших нескольких лет некоторые теории должны будут сойти с дистанции по результатам теста на этом объекте.

Постепенно у ОТО появляются проблемы и на космологическом фронте. Данные о возрасте шаровых звездных скоплений с трудом укладываются в рамки сроков, отведенных теорией Большого взрыва, основанной на ОТО. Теория Большого взрыва предсказывает, что крупномасштабное распределение вещества во Вселенной должно быть однородным. Последние годы масштаб, начиная с которого должна наблюдаться однородность, постоянно увеличивался под давлением наблюдательных данных.

У альтернативщиков тоже не все идет гладко. Но их проблемы лежат в несколько иной плоскости. Дело в том, что помимо вполне серьезных исследователей, разрабатывающих альтернативные теории гравитации, в мире существует гораздо большее число дилетантов, которые, не сумев разобраться в весьма нетривиальном математическом аппарате ОТО, начинают создавать свои собственные теории, называя их альтернативными. Нередко эти деятели имеют научные степени (полученные преимущественно в областях далеких от теории гравитации) и благодаря этому вхожи в научные круги. Они посылают статьи в научные журналы, выступают на конференциях, издают книги о своих доморощенных теориях, недостатки которых (если тут вообще можно говорить о недостатках) несоизмеримы с приведенными выше претензиями к ОТО.

К сожалению, для многих сторонников ОТО такие теории выглядят на одно лицо со вполне серьезными исследованиями в области альтернативных теорий гравитации. Фактически сложилась ситуация, в которой действует догмат непогрешимости ОТО (по крайней мере, положенного в ее основу геометрического подхода). Получается, что в сфере теории гравитации наука разделена на два клана, которые практически не взаимодействуют друг с другом. Такая ситуация, конечно, выглядит печально. Остается только надеяться, что взрывное накопление новых астрономических данных в самом недалеком будущем заставит эти два клана войти в соприкосновение.

Материалы к программе:

Из статей А. А. Логунова по релятивистской теории гравитации.

Релятивистская теория гравитации позволяет преодолеть трудности, с которыми столкнулась общая теория относительности. Новая теория основывается на фундаментальных законах сохранения материи и понятии гравитационного поля как физического поля типа Фарадея-Максвелла. Она объясняет все известные наблюдательные и экспериментальные данные о гравитации и дает новые представления о развитии Вселенной, гравитационном коллапсе, пространстве и времени.

Всем хорошо известно, что геометрия окружающего нас пространства евклидова. Она была открыта путем наблюдений, а затем свыше 2 тыс. лет назад сформулирована Евклидом в виде постулатов и аксиом. Постулаты и аксиомы, лежащие в основе евклидовой геометрии, представляют собой очевидные утверждения, принимаемые без доказательства. Они так естественны, что создалось почти абсолютное убеждение в единственности этой геометрии. Геометрами было затрачено немало сил, чтобы уменьшить число постулатов и аксиом, свести их к минимуму. Это удавалось, когда некоторые из них выводились из остальных. Очень много сил потратили математики, чтобы освободиться от пятого постулата (через точку вне данной прямой можно провести только одну прямую, ей параллельную), но этого сделать не удалось, хотя геометры занимались этой проблемой на протяжении более 2 тыс. лет.

Начало бурного развития механики как науки о движении тел относится к середине XVII в. Механика того периода была опытной наукой. В результате обобщения громаднейшего количества опытных данных И. Ньютоном были сформулированы три его знаменитых закона динамики и закон тяготения. Это дало возможность решать обширный для того времени круг задач о движении тел. Геометрия Евклида нашла воплощение в законах Ньютона. По существу, с этого момента изучение механических явлений стало не только проверкой законов Ньютона, но и евклидовой геометрии. Однако в тот период это еще не было осознано, поскольку в геометрии Евклида, в ее единственности как логической схемы, сомнений не было. И только в XIX в. Н. И. Лобачевский, изучая проблему пятого постулата в геометрии Евклида, пришел к выводу о необходимости его замены новым постулатом: через точку вне прямой на плоскости проходят по крайней мере две прямые, не пересекающие данную.

Цель его состояла в том, чтобы построить геометрию на основе новой системы постулатов и аксиом. Реализация этой программы привела Лобачевского к открытию неевклидовой геометрии. Лобачевский сделал величайшее открытие, но современники, даже крупные ученые, его не только не поняли, но заняли враждебную позицию. Позднее исследование Лобачевского явилось толчком к построению других геометрий. Стало ясно, что геометрий как логических систем может быть построено бесконечное множество, и только опыт способен решить, какая из них реализуется в окружающем нас мире. На современном математическом языке структура геометрии полностью задается выражением квадрата расстояния между соседними бесконечно близкими точками. В декартовых координатах евклидова пространства квадрат такого расстояния имеет вид: dll = dxx + dyy + dzz.

Здесь dx, dy, dz - дифференциалы координат. По сути дела, это не что иное, как теорема Пифагора для случая трехмерного пространства, если бы мы исходили из постулатов и аксиом Евклида. Это равенство можно положить в основу определения евклидовой геометрии. Если бы мы использовали в ней не декартовы координаты, а какие-либо другие - криволинейные (например, сферические, цилиндрические и т. д.), то квадрат расстояния между соседними точками в этих координатах (обозначим их xi) принял бы вид: dll = ?ik(x)dxidxi. Такая форма записи на математическом языке означает суммирование по одинаковым индексам i и k (i, k = 1, 2. 3). Величина?ik определяет структуру геометрии и называется метрическим тензором евклидового пространства. Евклидова геометрия обладает важнейшим свойством: в ней всегда можно ввести во всем пространстве глобальные декартовы координаты, в которых отличны от нуля только диагональные компоненты метрического тензора, равные все единице. Это означает, что евклидово пространство «плоское», или, иными словами, кривизна в каждой его точке равна нулю.

Б. Риман, развивая идею Н. И. Лобачевского и К. Ф. Гаусса, ввел особый класс геометрий, получивший название римановых, которые только в бесконечно малой области совпадают с евклидовыми. Он обобщил также фундаментальное понятие кривизны пространства. В римановой геометрии квадрат расстояния между двумя соседними точками записывается также в виде dll = ?ik (x)dxidxk, с той лишь принципиальной разницей, что в ней не существует во всем пространстве единых декартовых координат, в которых метрический тензор был бы всюду постоянен и имел бы диагональную форму. Это означает, что кривизна в римановом пространстве всегда отлична от нуля, а ее значение зависит от точки пространства.

Какая же геометрия имеет место в природе? Ответ на этот вопрос можно получить лишь на основании опыта, т. е. путем изучения явлений природы. Пока в физике мы имели дело с относительно малыми скоростями, опыт подтверждал, что геометрия нашего пространства евклидова, а такие понятия, как «длина» и «время», абсолютны и не зависят от системы отсчета. Изучение электромагнитных явлений, а также движения частиц со скоростями, близкими к скорости света, привело к удивительному открытию: пространство и время образуют единый континуум; роль расстояния между двумя близкими точками (событиями) играет величина, называемая интервалом. Квадрат интервала в декартовых координатах определяется равенством: dss = ccdTT - dxx - dyy - dzz. Здесь c - скорость света; T - время. Геометрия, определяемая таким интервалом, называется псевдоевклидовой, а четырехмерное пространство с такой геометрией - пространством Минковского (Minkowski). Квадрат интервала dss может быть величиной положительной, отрицательной или равной нулю. Это разделение носит абсолютный характер. Время и координаты входят в интервал почти равноправно (в квадрате) с той лишь принципиальной разницей, что у них разные знаки. В этом находит отражение глубокое различие таких физических понятий, как «длина» и «время». Величина интервала не зависит от системы отсчета, тогда как время и длина уже не являются абсолютными понятиями, они относительны и зависят от выбора системы отсчета.

Интервал dss имеет одинаковый вид в бесконечном классе систем отсчета, движущихся одна относительно другой с постоянной скоростью, меньшей скорости света. Такие системы отсчета являются инерциальными, ибо в них выполняется закон инерции. Преобразования от одной инерциальной системы к другой, сохраняющие вид интервала, называются преобразованиями Лоренца. Теорию, сформулированную в классе инерциальных систем отсчета на основе интервала dss, А. Эйнштейн называл специальной теорией относительности. Такое ограниченное понимание специальной теории относительности широко распространилось и проникло практически во все учебники. Однако представления, лежащие в основе специальной теории относительности, точно справедливы и для ускоренных систем отсчета.

Поскольку пространство Минковского однородно и изотропно, то на языке математики оно обладает максимальной десятипараметрической группой движения (четырехпараметрической группой трансляций и шестипараметрической группой вращений), а следовательно, в нем имеют место соответственно законы сохранения энергии - импульса и момента количества движения. Это означает, что всегда можно найти новые переменные x*, которые являются такими функциями старых переменных x, что при переходе к ним интервал полностью сохраняет свой вид: dss = ?ik(x*)dx*idx*k. Здесь в новых переменных x* все компоненты метрического тензора?ik(x*) те же, что и прежде. Таким образом, инвариантность формы интервала в пространстве Минковского имеет место не только для класса инерциальных систем отсчета, но и для произвольно выбранного класса ускоренных систем отсчета. Это свойство пространства Минковского формулируется как обобщенный принцип относительности: «Какую бы физическую систему отсчета мы ни избрали (инерциальную или неинерциальную), всегда можно указать бесконечную совокупность других систем - таких, в которых все физические явления (в том числе и гравитационные) протекают одинаково с исходной системой отсчета, так что мы не имеем и не можем иметь никаких экспериментальных возможностей различить, в какой именно системе отсчета из этой бесконечной совокупности мы находимся» Это означает, что, имея дело с ускоренными системами отсчета, мы не выходим за рамки специальной теории относительности. Этот принцип и будет далее положен в основу релятивистской теории гравитации, о которой пойдет речь позже. А пока мы обратимся к теории гравитации, созданной Эйнштейном. Обсудим ее основные принципы и трудности.

Ускорение, которое испытывает свободная материальная точка, в неинерциальной системе отсчета выражается через первые производные метрического тензора?ik по координатам и времени. В этом находит отражение универсальность сил инерции, которые вызывают ускорение, не зависящее от массы тела. В точности таким же свойством обладают и силы гравитации, поскольку, как показывает опыт, гравитационная масса тела равна его инертной массе. Рассматривая равенство инертной и гравитационной масс как фундаментальный факт, Эйнштейн пришел к выводу, что гравитационное поле, подобно силам инерции, должно описываться метрическим тензором. Это означает, что гравитационное поле характеризуется не каким-либо одним скалярным потенциалом, а десятью функциями, являющимися компонентами метрического тензора. Это был важнейший шаг в понимании сил гравитации, который позволил Эйнштейну после многолетних попыток построить теорию гравитации, выдвинуть идею о том, что пространство-время не псевдоевклидово, а псевдориманово (в дальнейшем мы будем говорить просто риманово).

Гравитационное поле Эйнштейн отождествил с метрическим тензором риманова пространства. Эта идея позволила Д. Гильберту и А. Эйнштейну получить уравнения для гравитационного поля, т. е. для метрического тензора риманова пространства. Таким путем и была построена общая теория относительности (ОТО).

Предсказание Эйнштейна об отклонении луча света в поле Солнца, а затем экспериментальное подтверждение этого эффекта, а также объяснение смещения перигелия Меркурия стали подлинным триумфом общей теории относительности Эйнштейна. Однако, несмотря на успехи, ОТО почти с самого своего рождения столкнулась с трудностями.

Э. Шредингер в 1918 г. показал, что соответствующим выбором системы координат все компоненты, характеризующие энергию-импульс гравитационного поля, вне сферически симметричного тела можно обратить в нуль Сначала этот результат показался Эйнштейну удивительным, но затем после анализа он ответил следующим образом: «Что же касается соображений Шредингера, то их убедительность заключается в аналогии с электродинамикой, в которой напряжения и плотность энергии любого поля отличны от нуля. Однако я не могу найти причину, почему так же должно обстоять дело и для гравитационных полей. Гравитационные поля можно задавать, не вводя напряжений и плотности энергии». Или еще: «…для бесконечно малой области координаты всегда можно выбрать таким образом, что гравитационное поле будет отсутствовать в ней».

Мы видим, что Эйнштейн сознательно отошел от классического понятия поля как материальной субстанции, которую даже локально никогда нельзя уничтожить выбором системы отсчета, и сделал он это во имя локального принципа эквивалентности сил инерции и гравитации, который был возведен им в ранг фундаментального принципа, хотя физических оснований для этого не было и нет. Все это и привело к представлению о невозможности локализации гравитационной энергии в пространстве.

Другая трудность, связанная с предыдущей, относилась к формулировке законов сохранения энергии и импульса. На нее впервые указал Д. Гильберт. В 1917 г. он писал: «Я утверждаю… что для общей теории относительности, т. е. в случае общей инвариантности гамильтоновой функции, уравнений энергии, которые… соответствуют уравнениям энергии в ортогонально-инвариантных теориях (имеется в виду теория поля в пространстве Минковского), вообще не существует. Я даже мог бы отметить это обстоятельство как характерную черту общей теории относительности». К сожалению, это высказывание Гильберта не было понято современниками, поскольку ни сам Эйнштейн, ни другие физики не осознали, что в ОТО в принципе невозможны законы сохранения энергии-импульса и момента количества движения.

Но Эйнштейн ясно понимал фундаментальное значение законов сохранения энергии-импульса вещества и гравитационного поля, вместе взятых, а поэтому вовсе не собирался от них отказываться. В 1918 г. он провел в рамках ОТО исследование, в котором, как он писал, «понятия энергии и импульса устанавливаются столь же четко, как и в классической механике». В том же году Ф. Клейн подтвердил результаты Эйнштейна. С тех пор при изложении данного вопроса буквально следуют Эйнштейну. Казалось бы, проблема полностью была решена, и Эйнштейн к ней больше не возвращался. Однако внимательный анализ показывает, что в рассуждениях Эйнштейна и Клейна содержится простая, но принципиальная ошибка Суть ее заключается в том, что величина J?, которой оперировал в своих рассуждениях Эйнштейн, отождествив ее компоненты с энергией и импульсом, просто равна нулю. Эйнштейну не суждено было увидеть, что принятие ОТО с необходимостью ведет к отказу от фундаментальных законов сохранения, а последнее, как показано нами, непосредственно приводит к выводу, что инертная масса тела (как она определена в ОТО) не равна его активной гравитационной массе. Но это означает, что ОТО не может объяснить экспериментальный факт равенства этих масс, а ведь Эйнштейн считал, что именно он является следствием его теории. Однако оказалось, что это не так. Основная причина отсутствия в ОТО законов сохранения кроется в том, что в римановой геометрии в общем случае нет группы движения пространства, а следовательно, симметрии пространства-времени, приводящей к законам сохранения. И хотя последнее математикам было предельно очевидно, да и физики, по-видимому, знали об этом, тем не менее отсутствие глубокого понимания математических истоков законов сохранения не позволило сделать единственно правильный вывод о том, что законов сохранения в ОТО быть не может. Работы Эйнштейна и Клейна, о которых мы писали выше, создали иллюзорную уверенность в наличии законов сохранения в ОТО. Эта уверенность бытует и в наши дни. Аппарат римановой геометрии благодаря своему изяществу и красоте до такой степени увлек физиков, занимающихся гравитацией, что почти полностью оторвал их от физической реальности.

Придание физического смысла математическим построениям без физических идей - занятие весьма сомнительное, но широко распространенное и в наше время. Таким образом, принятие концепции ОТО ведет к отказу от ряда фундаментальных принципов, лежащих в основе физики. Во-первых, это отказ от законов сохранения энергии-импульса и момента количества движения вещества и гравитационного поля, вместе взятых. Во-вторых, отказ от представления гравитационного поля как классического поля типа Фарадея-Максвелла, обладающего плотностью энергии-импульса. Для многих физиков, занимающихся ОТО, это неясно и до сих пор, другие же склонны рассматривать отказ от законов сохранения как величайшее достижение теории, низвергнувшей такое понятие, как «энергия». Однако ни в макро-, ни в микромире нет ни одного экспериментального факта, прямо или косвенно ставящего под сомнение справедливость законов сохранения материи. Поэтому мы были бы слишком легкомысленны, если бы сознательно отказались от этих законов без должных экспериментальных оснований. Без законов сохранения теория не может быть удовлетворительной. Отказ от ОТО продиктован как логикой физических представлений, так и экспериментальными фактами.

Отдавая должное ОТО как определенному важному этапу в изучении гравитации, можно изложить суть принципов релятивистской теории гравитации, построенной на основе фундаментальных законов сохранения.

В основу релятивистской теории гравитации (РТГ) положены следующие физические требования. В теории должны строго выполняться законы сохранения энергии-импульса и момента количества движения для вещества и гравитационного поля, вместе взятых. Под веществом понимаются все формы материи (включая и электромагнитное поле) за исключением гравитационной. Законы сохранения отражают общие динамические свойства материи и позволяют ввести единые характеристики для различных ее форм. Общие динамические свойства материи находят воплощение в структуре геометрии пространства-времени. Она с необходимостью оказывается псевдоевклидовой (иными словами, теория строится в пространстве Минковского). Таким образом, геометрия задается не соглашением, как считал Пуанкаре, а однозначно определяется законами сохранения. Пространство Минковского, как уже сказано, обладает четырехпараметрической группой трансляций и шестипараметрической группой вращений. Данное положение кардинальным образом отличает РТГ от общей теории относительности и полностью выводит нас из римановой геометрии. Гравитационное поле описывается симметрическим тензором и является реальным физическим полем, обладающим плотностью энергии и импульса. Если этому полю сопоставить частицы (кванты поля), то они должны иметь нулевую массу покоя, поскольку гравитационное взаимодействие дальнодействующее. При этом у реальных и виртуальных квантов гравитационного поля могут быть состояния со спинами 2 и 0.

Такое определение гравитационного поля возвращает ему физическую реальность, поскольку его уже даже локально нельзя уничтожить выбором системы отсчета, а следовательно, нет никакой (даже локальной) эквивалентности между гравитационным полем и силами инерции. Данное физическое требование в корне отличает РТГ от ОТО. Эйнштейн в ОТО отождествил гравитацию с метрическим тензором риманова пространства, но этот путь и привел к утрате понятия гравитационного поля как физического поля, а также к потере законов сохранения. Отказ от этого положения ОТО продиктован в первую очередь стремлением сохранить в теории гравитации эти фундаментальные физические понятия.

Система уравнений Максвелла для электромагнитного поля и уравнений РТГ. Их сходство является отражением одного из основных положений РТГ, согласно которому гравитационное поле рассматривается как физическое поле, обладающее плотностью энергии и импульса Вместо него в теорию вводится принцип геометризации, суть которого в следующем: взаимодействие гравитационного поля с веществом в силу своей универсальности описывается путем подключения тензора гравитационного поля Фik к метрическому тензору?ik пространства Минковского. Это всегда можно осуществить, поскольку какую бы форму материи мы ни избрали, в ее исходные физические уравнения войдет метрический тензор пространства Минковского. Иначе и не может быть, так как физические процессы протекают во времени и пространстве.

Согласно Эйнштейну движение вещества происходит в римановом пространстве-времени, а пространства Минковского в ОТО нет. Согласно же принципу геометризации вещество движется в пространстве Минковского под действием гравитационного поля. Такое движение действительно эквивалентно движению в некотором «эффективном» римановом пространстве. Гравитационное поле как бы изменяет геометрию остальных полей. Наличие пространства Минковского в РТГ позволяет рассматривать гравитационное поле как обычное физическое поле в духе Фарадея-Максвелла с его обычными свойствами носителя энергии-импульса.

Итак, не частные физические проявления движения материи, а ее наиболее общие динамические свойства определяют структуру геометрии, которая должна лежать в основе физической теории. В релятивистской теории гравитации (РТГ) геометрия определяется не на основе изучения движения света и пробных тел, а на основе общих динамических свойств материи - ее законов сохранения, которые не только имеют фундаментальное значение, но и экспериментально проверяемы. При этом движение света и пробных тел обусловлено простым действием гравитационного поля на вещество в пространстве Минковского. Таким образом, пространство Минковского и гравитационное поле являются исходными, первичными понятиями, а «эффективное» риманово пространство - понятием вторичным, обязанным своим происхождением гравитационному полю и его универсальному действию на вещество. В самой сути принципа геометризации заложено разделение сил инерции и гравитационного поля. Но это разделение лишь тогда может быть физически реализовано, когда в уравнения для гравитационного поля будет входить метрический тензор пространства Минковского. В ОТО, как легко убедиться непосредственно из уравнений Гильберта - Эйнштейна, такое разделение невозможно, поскольку в римановой геометрии, на которой основана ОТО, не существует понятия пространства Минковского. Поэтому ошибочны, например, утверждения, что ОТО можно получить, исходя из концепций пространства Минковского. В принципе геометризации, с одной стороны, полностью исключена идея Эйнштейна об отождествлении гравитации с метрическим тензором риманова пространства, а с другой - развита идея Эйнштейна о римановой геометрии. Если пространство-время полностью определяется метрическим тензором, то материя характеризуется своим тензором энергии-импульса. Для каждой формы материи он имеет свой определенный вид. Полный тензор энергии-импульса вещества и гравитационного поля в пространстве Минковского является сохраняющимся тензором. Ввиду универсального характера гравитации он и должен служить в уравнениях РТГ источником гравитационного поля. Полная система уравнений релятивистской теории гравитации может быть формально получена из уравнений Максвелла для электродинамики, если вместо векторного электромагнитного поля в левой части уравнений мы поставим тензорное гравитационное поле, а сохраняющийся электромагнитный ток заменим тензором энергии-импульса всей материи.

Конечно, такой вывод является просто эвристическим приемом, и он ни в коей степени не может претендовать на строгость. Но точное рассмотрение на основании изложенных ранее принципов РТГ в соединении с локальной калибровочной инвариантностью однозначно приводят именно к такой системе из 14 гравитационных уравнений. Четыре дополнительных полевых уравнения РТГ определяют физическую структуру гравитационного поля и принципиально отделяют все, что относится к силам инерции, от всего, что имеет отношение к гравитационному полю.

Остальные десять уравнений совпадают с уравнениями Гильберта-Эйнштейна с той лишь принципиальной разницей, что полевые переменные в них являются функциями координат Минковского. Это совершенно изменяет их физическое содержание и отличает от уравнений ОТО. Все уравнения общековариантны, т. е. имеют одинаковый вид во всех системах отсчета пространства Минковского, и в них явно входит метрический тензор этого пространства. Это означает, что пространство Минковского находит свое отражение не только в законах сохранения, но и в описании физических явлений. Все компоненты поля (электромагнитного, гравитационного и т. д.) в нашей теории являются функциями координат пространства Минковского. Это имеет принципиальное значение. Решая систему уравнений поля, мы устанавливаем зависимость метрического тензора «эффективного» риманова пространства как от координат пространства Минковского, так и от гравитационной постоянной G. Собственное время (измеряемое часами, движущимися вместе с веществом) оказывается зависящим от координат пространства Минковского и гравитационной постоянной. Таким образом, ход собственного времени обусловлен характером гравитационного поля.

Присутствие метрического тензора пространства Минковского в уравнениях поля позволяет отделить силы инерции от гравитационных и во всех случаях найти их влияние на те или иные физические процессы. Поэтому пространство Минковского является физическим, а следовательно, и наблюдаемым.

Характеристики его, если это необходимо, всегда можно проверить путем соответствующей обработки экспериментальных данных по движению световых сигналов и пробных тел в «эффективном» римановом пространстве. «Что касается соображения, что прямая, как луч света, более непосредственно наблюдаема, - писал в свое время В. А. Фок, - то оно не имеет никакого значения: в определениях решающим является не непосредственная наблюдаемость, а соответствие природе, хотя бы это соответствие и устанавливалось путем косвенных умозаключений».. Таким образом, наблюдаемость надо понимать не в примитивном, а в более общем и глубоком смысле как адекватность природе.

Разумеется, РТГ ни в коем случае не исключает возможность описания материи в «эффективном» римановом пространстве. Уравнения РТГ содержат метрический тензор пространства Минковского, а поэтому все функции, описывающие физические поля, выражаются в единых координатах для всего пространства-времени Минковского, например в галилеевых (декартовых) координатах. Уравнения Гильберта-Эйнштейна в соединении с уравнениями, определяющими структуру гравитационного поля, приобретают новый физический смысл, при этом они изменяются и существенно упрощаются. Законы сохранения энергии-импульса вещества и гравитационного поля, вместе взятые, являются следствиями уравнений РТГ и отражают псевдоевклидову структуру пространства-времени. Всего перечисленного ОТО в принципе лишена, поскольку в римановой геометрии, повторим, не существует понятия пространства Минковского.

Теперь - о некоторых физических следствиях РТГ. В начале 20-х годов А. А. Фридман, решая уравнения Гильберта - Эйнштейна в предположении, что плотность вещества в каждой точке пространства одинакова и зависит только от времени (фридмановская однородная и изотропная Вселенная), обнаружил, что возможны три модели нестационарной Вселенной (фридмановские модели Вселенной). Каждый тип Вселенной определяется соотношением между плотностью вещества в данный момент и так называемой критической плотностью, определяемой на основании измерения постоянной Хаббла. Если плотность вещества больше критической, то Вселенная замкнута и имеет конечный объем, но не имеет границ. Если плотность вещества меньше или равна критической, то Вселенная бесконечна.

На вопрос о том, какая из этих моделей реализуется в природе, ОТО в принципе не может дать определенного ответа. Согласно РТГ фридмановская однородная и изотропная Вселенная бесконечна, и она может быть только плоской - ее трехмерная геометрия евклидова. В этом случае плотность вещества во Вселенной точно равняется критической плотности. Таким образом, РТГ предсказывает, что во Вселенной должна существовать «скрытая масса», плотность которой почти в 40 раз превышает плотность вещества, наблюдаемого сегодня.

Другим важным следствием РТГ является утверждение, что суммарная плотность энергии вещества и гравитационного поля во Вселенной должна равняться нулю.

Предсказание РТГ для развития фридмановской однородной и изотропной Вселенной существенно отличается от выводов ОТО. Далее, из ОТО следует, что объекты с массой, превышающей три массы Солнца, за конечный промежуток собственного времени должны неограниченно сжиматься гравитационными силами (коллапсировать), достигая при этом бесконечной плотности. Объекты такого типа получили название черных дыр. Они не имеют материальной поверхности, и поэтому тело, падающее в черную дыру, при пересечении ее границы не встретит ничего, кроме пустого пространства. Из внутренней области черной дыры через ее границу не может вырваться наружу даже свет. Иными словами, все, что происходит внутри черной дыры, в принципе не познаваемо для внешнего наблюдателя.

Дж. Уилер рассматривал гравитационный коллапс и возникающую при этом сингулярность (бесконечную плотность) как один из величайших кризисов всех времен для фундаментальной физики. Релятивистская теория гравитации в корне изменяет представления о характере гравитационного коллапса. Она приводит к явлению гравитационного замедления времени, благодаря которому сжатие массивного тела в сопутствующей системе отсчета происходит за конечное собственное время. При этом, что самое главное, плотность вещества остается конечной и не превышает 1016 г/см в кубе, яркость тела экспоненциально уменьшается, объект «чернеет», но в отличие от черных дыр всегда имеет материальную поверхность. Такие объекты, если они возникают, имеют сложное строение, при этом никакого гравитационного «самозамыкания» не происходит, а потому вещество не исчезает из нашего пространства. В РТГ собственное время для падающего пробного тела зависит как от координат пространства Минковского, так и от гравитационной постоянной G, а следовательно, ход собственного времени определяется характером гравитационного поля. Именно это обстоятельство и приводит к тому, что собственное время для падающего пробного тела неограниченно замедляется по мере приближения к так называемому шварцшильдовскому радиусу.

Таким образом, согласно РТГ, никаких черных дыр - объектов, в которых происходит катастрофически сильное сжатие вещества до бесконечной плотности и которые не имеют материальной поверхности, - в принципе не может быть в природе. Все это принципиально отличает предсказания РТГ от предсказаний ОТО. Сжатие массивных объектов, когда давление не равно нулю, будет, конечно, слабее, поскольку внутреннее давление препятствует гравитационному притяжению. Эволюция реальных объектов требует более детального изучения с использованием уравнения состояния вещества и является очень интересной проблемой.

РТГ объясняет всю имеющуюся совокупность наблюдательных и экспериментальных данных для гравитационных эффектов в Солнечной системе. Детальный анализ показывает, что предсказания ОТО для гравитационных эффектов в Солнечной системе неоднозначны, причем для одних эффектов произвол возникает в членах первого порядка по гравитационной постоянной G, а для других - в членах второго порядка. В чем причина такой неоднозначности? В ОТО для определения компонент метрического тензора риманова пространства в каких-либо координатах необходимо задать так называемые координатные условия, которые весьма произвольны и всегда нековариантны (относятся только к определенной выбранной системе координат). В зависимости от вида этих условий мы в одних и тех же координатах в общем случае обязательно получим разные метрические тензоры. Но разные метрические тензоры в одних и тех же координатах будут давать и разные геодезические, значит, будут различны и предсказания ОТО для движения света и пробных тел.

Итак, релятивистская теория гравитации, построенная на основании законов сохранения и представлений о гравитационном поле как физическом поле, обладающем плотностью энергии-импульса, в соединении с принципами геометризации и локальной калибровочной инвариантности объясняет все известные наблюдательные и экспериментальные данные о гравитации и дает новые предсказания о развитии фридмановской Вселенной и гравитационном коллапсе.

Библиография

Денисов В. И., Логунов А. А. Современные проблемы математики. Итоги науки и техники. М., 1982.

Ландау Л. Д., Лифшиц Краткий курс теоретической физики. М., 1969.

Логунов А. А. Новые представления о пространстве, времени и гравитации//Наука и человечество: Международный ежегодник. М., 1988.

Логунов А. А. Лекции по теории относительности и гравитации. М., 1985.

Логунов А. А. Теория гравитационного поля. М., 2000 (2001).

Логунов А. А., Лоскутов Ю. М. Неоднозначность предсказаний общей теории относительности и релятивистская теория гравитации. М., 1986.

Логунов А. А., Мествиришвили М. А. Основы релятивистской гравитации. М., 1982.

Клейн Ф. Об интегральной форме законов сохранения и теории пространственно замкнутого мира//Эйнштейновский сборник.1980–1981. М., 1985.

Фок В. А. Теория пространства, времени и тяготения. М., 1965.

Шредингер Э. Компоненты энергии гравитационного поля/Эйнштейновский сборник. 1980–1981. М., 1985.

Эйнштейн А. Собрание научных трудов. М., 1965. Т. 1.

Тема № 201

Эфир 21.01.03

Хронометраж 46:00.

То, что мы называем прогрессом, -
является заменой одной неприятности на другую.
Генри Хейвлок Эллис

Теории гравитации альтернативные ОТО

Ничто не делает нашу жизнь столь
приятной, как ее неизбежная
альтернатива.
Народная мудрость

Все течет, все изменяется. Было время, казалось, что лучшей теории гравитации, чем ньютоновская, незачем желать. На протяжении всей книги мы рассказывали, как шаг за шагом общая теория относительности «занимала свое место под солнцем». Осталось всего несколько лет до ее 100-летнего юбилея. Каков же сейчас ее статус? Без сомнения, ОТО является самой востребованной теорией гравитации, прежде всего, в астрофизике и космологии, и мы попытались это показать. Теория строения и эволюции звезд, особенно на заключительных этапах; эффекты на поверхности компактных и сверхплотных объектов; космологические модели в разные эпохи эволюции и многоедругое не могут быть удовлетворительно рассчитаны без использования ОТО. На основе эффектов, предсказанных ОТО, создаются целые направления исследований - поиск гравитационных волн, исследование гравитационных линз и т. д. Являясь частью теоретической физики, ОТО используется также во многих фундаментальных исследованиях.

Фактически сразу после подтверждения классическими тестами ОТО завоевала невиданную популярность. Но, конечно, измерениями отклонения луча света далекой звезды в гравитационном поле Солнца, смещения перигелиев планет в Солнечной системе, а также красного гравитационного смещения в поле Земли дело не закончилось и не могло закончиться. В течение всего времени после ее завершения в 1915 году, как основные принципы, так и уравнения непрерывно проверяются и перепроверяются со все возрастающей точностью. Однако результатов, которые бы противоречили ОТО, так и не было получено. Мало того, она давно используется в практических целях, таких как расчет орбит спутников, планет и траекторий межпланетных аппаратов.

Можно сказать, что эффекты ОТО уже используются и в быту: для повышения точности систем навигации и слежения типа GPS. Постоянно на орбитах на высоте 20 000 км находится от 24 до 27 спутников. Для повышения точности используются сигналы от нескольких спутников, обмен сигналами с устройствами на Земле. Для этого необходима строгая синхронизация часов на всех объектах. Оказывается точности атомных часов недостаточно. Необходимо учитывать замедление хода часов, которое происходит, согласно ОТО, в гравитационном поле Земли. Другими словами, одни и те же часы на Земле идут медленнее, чем на орбите. Для высоты 20 000 км эта разница составляет 38 мкс в сутки и приведет к ошибке в определении расстояния до 10 м. Чтобы компенсировать этот эффект, ход часов «по паспорту» на орбите настраивают медленнее. Если их спустить с орбиты и поместить рядом с земными - они будут запаздывать на 38 мкс в сутки.

До сих пор наше изложение фактически демонстрировало успехи ОТО, и может показаться, что в силу этой радужной картины, кроме ОТО никакие другие теории не рассматривались, ничего другого не предлагалось, или вовсе все «неэйнштейновское» наотмашь отметалось. Вовсе нет. Деятельность по созданию теорий гравитации была и остается очень бурной. Развитие теорий и их активная и всесторонняя проверка продвигались рука об руку весь XX век и далее.

Большинство проверок могут быть отнесены к специальным классам, предложенным американским релятивистом Клиффордом Уиллом в 2001 году:

Простейшие основания.
Эйнштейновский принцип эквивалентности.
Параметризованный пост-ньютоновский формализм.

О соответствии двум последним классам поговорим ниже, а сейчас обсудим, что же такое «простейшие основания»?

В начале 1970-х годов группа ученых из Калифорнийского технологического института под руководством идеолога проекта LIGO профессора Кипа Торна, а также Клиффорда Уилла и тайваньского физика Вей-Тоу Ни составила список теорий гравитации XX века. По каждой теории они задались следующими вопросами по проблеме простейших оснований:

Является ли теория самосогласованной?
является ли она полной?
согласуется ли она, в пределах нескольких стандартных отклонений, со всеми проведенными к настоящему времени экспериментами?

Критерий «согласование со всеми экспериментами, проведенными к настоящему времени», часто заменялся критерием «согласования с большинством следствий механики Ньютона и специальной теории относительности».

Самосогласованность неметрических теорий включает требования , например, отсутствия в ее решениях тахионов, гипотетических частиц, движущихся со скоростями больше световой; отсутствия проблем в поведении полей на бесконечности и т. п.

Для того чтобы теория гравитации была полной , она должна быть способна описать результаты любого мыслимого эксперимента, она должна быть совместной с другими физическими теориями, подтвержденными экспериментом. Например, любая теория, которая не может из первых принципов предсказать движение планет или поведение атомных часов, является неполной.

Примером неполной и несамосогласованной теории может служить теория тяготения Ньютона в сочетании с уравнениями Максвелла. В такой теории свет (как фотоны) отклоняется гравитационным полем (хотя и вдвое слабее, чем в ОТО), а свет (как электромагнитные волны) - нет.

Если теория не проходила по этим критериям, то ее, тем не менее, не спешили отбрасывать. Если теория была неполна в своих основах, группа пыталась дополнить ее с помощью малых изменений, обычно сводя теорию в отсутствие гравитации к специальной теории относительности. Только после этого делался вывод, достойна ли она дальнейшего рассмотрения. Теорий, которые заслуживают внимания, в 70-х годах насчитывалось несколько десятков. Трудно сказать, но за последние два-три десятилетия их число, возможно, достигло сотни и более. Все зависит от ответа на вопрос, что считать одной теорией, а что классом теорий. Поэтому отбор по различным критериям проводится и сейчас, и с еще большим пристрастием. Это крайне важно, поскольку есть предпосылки, что в ближайшие десятилетия или на малых масштабах, или на больших, или одновременно ОТО будет изменена.

Проверка ОТО на масштабах планетных систем

Теперь вспомним, что основой ОТО как метрической теории является принцип эквивалентности и постулат движения по геодезическим. Известно, что этим основам, если они установлены с абсолютной точностью, удовлетворяют лишь «чисто» метрические теории (с небольшими оговорками), т. е. теории, где гравитационное поле представлено только метрическим тензором. Оказывается, что ОТО это лишь простейший вариант метрической теории. Нисколько не нарушая этих основ, можно представить бесчисленное (без преувеличения) множество метрических теорий. Как тогда можно изменить теорию? За что же зацепиться в этом случае? Конечно, лишь эксперимент и наблюдения могут поставить все на место. Но для классификации альтернативных предложений нужна своя стратегия.

Работу над стандартным формализмом для проверки альтернативных моделей гравитации начал еще в 1922 году Артур Эддингтон (1882–1944). Усовершенствование этого формализма, так или иначе, продолжалось на протяжении десятилетий, а закончили дело американские физики Клиффорд Уилл и Кеннет Нордведт в 1972 году. Ими предложен так называемый параметризованный пост-ньютоновский (PPN) формализм. Он создан для теорий либо чисто метрических, либо с эффективной метрикой, представляющей искривленное пространство-время, где происходят физические взаимодействия. Рассматриваются лишь отклонения от механики Ньютона, поэтому формализм применим только в слабых полях. В общем случае существует 10 PPN-параметров. В случае ОТО 2 из них равны единице, а остальные 8 - нулю.

Чем полезен PPN-формализм в проверке ОТО? Новые технологии позволяют достаточно точно отслеживать движения небесных тел, и современная стандартная проверка происходит следующим образом. С помощью уравнений ОТО именно в PPN виде рассчитываются траектории тел в Солнечной системе. Этот вид оказывается наиболее конструктивным. Затем их сравнивают с данными наблюдений. Современный результат таков, что соответствие теоретических PPN параметров ОТО наблюдаемым подтверждается с точностью от десятых до сотых долей процента - это очень высокая точность.

Другие точные тесты - это наблюдения двойных пульсаров: систем, состоящих из двух нейтронных звезд, их известно сейчас около десятка. Кроме этого, есть системы, состоящие из радиопульсара и белого карлика, они тоже подходят для тестов. На основании этих наблюдений вычисляются параметры орбит. Оказывается, что отклонения от кеплеровских значений совпадают с отклонениями, предсказанными ОТО, также с точностью до десятых и сотых долей процента. Специалисты испытывают большой оптимизм в перспективах повышения точности при изучении именно двойных пульсаров. Он основан на том, что нейтронные звезды имеют размеры в десятки километров в системах с размерами орбит в миллионы километров. В таких системах звезды фактически являются точечными объектами. Их внутреннее строение, внутренние движения, а также деформации практически не влияют на траектории. В отличие от этого, в Солнечной системе все эти факторы, а также влияние многочисленных «соседей» существенно ограничивают повышение точности. Резюмируя, можно сказать, что на масштабах планетных систем ОТО подтверждена с высокой точностью и точность измерений будет повышаться.

Необходимость модификации ОТО

Надо жизнь сначала переделать,
переделав - можно воспевать.
Владимир Маяковский

Однако исследования по созданию теорий альтернативных ОТО, в большей части как раз метрических, не прекращаются. Почему? ОТО хорошо подтверждается, как только что было сказано, на масштабах Солнечной системы. Проверить теорию на бо льших или меньших масштабах существенно сложнее. ОТО, как и любая другая теория, всего лишь модель для описания реальных явлений. Поэтому реальная природа может совпадать с предсказаниями ОТО на масштабах планетных систем, но отличаться на других масштабах.

Вместе с этим, многие современные теоретические и эмпирические данные говорят о том, что так и должно быть, и модификации необходимы. Например, во многих решениях ОТО необходимо рассматривать сильные гравитационные поля, огромные плотности и т. д. А это требует квантования гравитационного поля. Несмотря на значительные усилия, решающего успеха на этом поприще добиться не удалось. Это наводит на мысль, что на малых масштабах, где требуется квантование, гравитационная теория должна быть изменена. С другой стороны, недавнее открытие ускоренного расширения Вселенной многие ведущие специалисты склонны интерпретировать как геометрический эффект, который можно «получить», модифицировав ОТО на космологических масштабах. Независимо от этого, к необходимости изменений ОТО на больших и малых масштабах приводят результаты исследований в физике фундаментальных взаимодействий.

Если говорить о жизнеспособных теориях, то нет установившейся терминологической разницы для альтернативных, модифицированных или новых теорий. Все они, так или иначе, развивают ОТО, поскольку должны работать не хуже на тех масштабах, где она подтверждается. Разрабатывая модификации ОТО или новые теории, авторы сравнивают их с ОТО в соответствующих режимах точно так же, как ОТО сравнивается с гравитацией Ньютона. Если угодно, должен быть удовлетворен все тот же принцип соответствия, но на новом витке познания.

В настоящее время на многих конференциях по теории гравитации обобщенным (или альтернативным) теориям посвящаются целые секции, по этой тематике выходят отдельные сборники, некоторые теории становятся все более и более самостоятельными. Каковы же основные наиболее популярные и перспективные направления в этих разработках?

Во-первых, ОТО является чисто метрической (или чисто тензорной) теорией. Это означает, что геометрия пространства-времени и материя воздействуют друг на друга без посредников. Таких теорий можно построить бесконечно много (о чем мы уже говорили), и они активно разрабатываются. Как правило, уравнения этих теорий отличаются от уравнений ОТО тем, что они дополняются квадратичными и более высокого порядка по кривизне слагаемыми. Дополнительные члены обычно входят с малыми коэффициентами, которые обеспечивают согласие с наблюдениями, скажем, на масштабах планетных систем, но существенно изменяют решения на космологических масштабах.

Другой класс альтернативных теорий характеризуется тем, что воздействие друг на друга геометрии и материи осуществляется через дополнительное поле, чаще всего это скалярное или векторное поле. Однако вклад этих полей не может быть существенным. Отклонение современных альтернативных теорий от ОТО должно выразиться в разнице соответствующих PPN параметров. Чтобы оценить жизнеспособность отличной от ОТО теории (проверить ее) необходимо регистрировать отклонения от значений PPN параметров в ОТО на уровне 10 –6 –10 -8 . Это означает, что точность измерений, как в Солнечной системе, так и в двойных пульсарах, должна быть улучшена на 1–3 порядка.

Теория гравитации Хоржавы

Эта теория является одним из вариантов векторнотензорных теорий гравитации и, пожалуй, самая популярная на настоящий момент. Именно поэтому мы рассказываем о ней. Теория была предложена в 2009 году американским теоретиком-«струнником» чешского происхождения Петром Хоржавой. Она несколько отличается от обычных векторно-тензорных теорий, поскольку в ней вместо векторного поля используется градиент скалярного. С одной стороны, сохраняются свойства векторных теорий, с другой - есть специфические собственные полезные свойства.

Еще раз вспомним, что непротиворечивую квантовую теорию гравитации, в которой не было бы расходимостей, на основе ОТО создать не удалось. Поэтому предлагаются различные модификации, которые на квантовых масштабах существенно расходятся с ОТО и становятся «подходящими» для квантования. Для этого при их построении некоторые принципы, лежащие в основе ОТО, изменяются, т. е. оказываются нарушенными. Конечно, это нарушение должно быть настолько незначительным, чтобы не противоречить лабораторным тестам, и чтобы не изменилось действие теории на масштабах планетных систем, где есть хорошее соответствие с наблюдениями. Именно такой является теория Хоржавы. Мы не будем рассказывать насколько она замечательна в смысле квантования, это несколько в стороне от темы книги, зато расскажем о ее свойствах как гравитационной теории - в чем и насколько они отличны от аналогичных свойств ОТО.

Лоренц-инвариантность. Мы уже обсуждали тот факт, что ОТО как бы «выросла» из специальной теории относительности - механики высоких скоростей, сравнимых со скоростью света. Напомним, что в СТО все инерциальные системы отсчета, движущиеся относительно друг друга равномерно и прямолинейно, эквивалентны. Важно вспомнить об измерениях времени в СТО. В каждой инерциальной системе отсчета часы идут в своем собственном темпе, отличном от темпа часов других систем, если их сравнивать . Однако нельзя выбрать ни «лучший», ни «худший» темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.

Мы также говорили, что на геометрическом языке инвариантность в СТО при переходе от одной инерциальной системы отсчета к другой эквивалентна инвариантности относительно лоренцевых вращений во всем плоском пространстве-времени. В ОТО из-за «включения» гравитации и, соответственно, искривления пространствавремени лоренц-инвариантность во всем пространстве-времени уже невозможна. Тем не менее, ОТО остается лоренц-инвариантной локально , то есть в малой окрестности каждого наблюдателя. Эта инвариантность является одним из принципов, лежащих в основе ОТО, и связана с принципом соответствия ОТО и СТО.

Хронометрическая теория. В ряде модификаций ОТО нарушена как раз локальная лоренц-инвариантность. Среди них и теория Хоржавы. В последнее время особой популярностью пользуется одна из ее реализаций, так называемая «жизнеспособная» («healthy») непроективная версия, разрабатываемая американскими физиками Диего Бласом и Ориолом Пуйоласом и нашим соотечественником Сергеем Сибиряковым. Эффекты, обсуждаемые ниже, в основном относятся именно к этой модификации ОТО.

Итак, чем же теория Хоржавы отличается от ОТО? В дополнение ко всем обычным полям ОТО добавляют скалярное полеφ, но не обычным образом. Направление его изменения в пространстве-времени определяет специально выделенное направление времени. Именно поэтому скалярное поле называют полем хронона. Тогда поверхности постоянных значений скалярного поля - это поверхности постоянного времени, или «одновременности». В уравнения скалярное поле входит только через производные, поэтому не стоит опасаться бесконечных значений поля хронона. Существенным является только его изменение, а не значения. Поскольку в пространстве-времени есть выделенное направление, то существуют выделенные системы отсчета. Это не свойственно ни СТО, ни ОТО, но свойственно векторно-тензорным теориям. Для наглядности приведем простейший «игрушечный» пример. Одно из решений новой теории - это плоское пространство-время (такое как в СТО) плюс поле хронона, которое оказывается просто временем, φ = t . В СТО мы можем перейти с помощью лоренцевых преобразований из одной координатной системы x, t в другую x", t", где время течет по-другому. В новой теории - не можем, поскольку значение скалярного поля при координатных преобразованиях не меняются, а это есть время. Таким образом, здесь, в отличие от СТО, существуют часы, которые отсчитывают выделенное время.

Поскольку в ОТО гравитационным полем является поле метрики пространства-времени, то ясно, почему новую теорию называют хроно метрической. Допустимые ограничения на параметры хронометрической теории дают возможность избежать расходимости при квантовании. Еще раз повторим: это и было главной целью ее построения. Но это теоретический успех, а проверить квантовые эффекты такого уровня сейчас вряд ли возможно.

Однако новая теория должна измениться и в классических (не квантовых) проявлениях. А это дает возможность доказать или опровергнуть ее право на существование. Далее мы покажем, в каких классических явлениях и насколько хронометрическая теория отличается от ОТО, можно ли выявить в наблюдениях эффекты новой теории, проиллюстрируем разницу для некоторых теоретических моделей. Для этого обсудим наиболее яркие, на наш взгляд, примеры.

Гравитационно-волновое излучение. Вспомним, что гравитационная волна в ОТО - поперечная, тензорная, имеет две поляризации (см. рис. 10.2) и распространяется со скоростью света. Гравитационные волны в теории Хоржавы также существуют. Однако помимо двух уже упомянутых тензорных поляризаций имеет место скалярная степень свободы. Это означает, что под действием такой волны к движению пробных частиц добавятся продольные (в направлении распространения волны) смещения. Важно то, что тензорная и скалярная составляющие имеют разные скорости распространения. Кроме того, обе скорости, имея зависимость от параметров модели Хоржавы, должны превышать (!) скорость света, хотя и незначительно. Эти отличия от ОТО интересны, но к сожалению пока только теоретически. До сих пор нет хотя бы непосредственного детектирования гравитационных волн, поэтому фиксация отмеченных различий представляется делом отдаленного будущего.

Тем не менее существует косвенное подтверждение существования гравитационного излучения. Это наблюдения за двойными пульсарами, уменьшение размеров орбит которых свидетельствует о потере энергии на гравитационно-волновое излучение. Этот эффект находится в соответствии с ОТО с относительной точностью 10 -2 , о чем мы уже говорили. Но предсказания ОТО и теории Хоржавы различны. Поэтому если последняя жизнеспособна, то есть шанс, что уже дальнейшее увеличение точности выявит эти различия и уточнит параметры новой теории.

Взаимодействие частиц. Мгновенное действие. Теперь для хронометрической теории рассмотрим взаимодействие гравитационного поля с веществом. Обсудим только первое (линейное) приближение, которое может быть доступно для наблюдений. В этом порядке эффекты, связанные с нарушением лоренц-инвариантности, подавлены в силу различных причин, но поле хронона присутствует, оно включено лоренц-инвариантным образом в так называемую эффективную метрику. То есть метрика ОТО модифицируется, и материя распространяется не в исходном пространстве-времени, а в некотором эффективном пространстве-времени, причем универсальным образом. Возможно в будущем именно это взаимодействие позволит обнаружить классические явления, представленные хронометрической теорией.

В приближении слабых полей и малых скоростей пределом гравитационной теории должна стать гравитация Ньютона. В последней взаимодействие двух частиц представлено известным законом Ньютона, где сила пропорциональна массам, гравитационной постоянной, обратно пропорциональна квадрату расстояния, но не зависит от скоростей этих частиц. Присутствие поля хронона изменяет и дополняет и этот закон следующим образом. Незначительно меняется гравитационная постоянная , теперь ее называют эффективной, и появляется зависимость от скоростей . Возможность детектирования этих эффектов определяется константами связи хронометрической теории.

Влияние поля хронона проявляется также в том, что некоторые взаимодействия могут распространяться мгновенно (!), т. е. с бесконечной скоростью. Как сделан этот вывод? Обычно уравнения для возмущений содержат волновой оператор, который состоит из двух частей: пространственной и временной. Величина, обратная коэффициенту при второй части - это квадрат скорости распространения возмущений. Полное отсутствие второй части означает, что эта скорость бесконечна. Именно такую структуру имеет часть уравнений теории Хоржавы. Здесь уместно провести аналогию с теорией Ньютона. В ней точно так же, как и в хронометрической теории, выделено течение времени («абсолютное время») и гравитационное взаимодействие распространяется мгновенно.

Как представить мгновенное распространение? Вообразите поверхность постоянного времени, тогда сигнал, распространяясь на ней (то есть без изменения времени), мгновенно проходит любые расстояния. Это недопустимо в таких релятивистских теориях как СТО или ОТО. Обратимся к диаграмме на рис. 12.1. Рассмотрим три точки в пространстве: A, B и C . В момент t = 0 эти точки соответствуют событиям A 0 , B 0 , C 0 , которые, в рамках СТО причинно не связаны. Только в момент t 1 событие A 0 становится причинно связанным с событием B 1 в точке B , а в момент t 2 и с событием C 2 в точке C . Как и должно быть в СТО (или ОТО), распространение сигналов жестко связано и ограничено световыми конусами. В теории Хоржавы для некоторых взаимодействий это вполне может быть не так. Мгновенное распространение означает, что все три события A 0 , B 0 , C 0 в момент времени t = 0, произошли как следствие одного мгновенно распространяющегося сигнала, то есть они могут быть причинно связанными. Однако такая «фантастическая» возможность не ограничивает хронометрическую теорию решающим образом. Выделенность направления времени означает, что понятие одновременности определено однозначно, поэтому не возникает проблем с причинностью, хотя бы и такой экзотической.

Солнечная система. Для проверки какой-либо гравитационной теории при измерении движений в планетной системе используется PPN-формализм. Как в любой векторной теории, в теории Хоржавы должны присутствовать эффекты привилегированной системы отсчета .Это приводит к тому, что оказываются ненулевыми PPN-параметры группыα. Действительно, кроме двух PPN-параметров, присущих ОТО, хронометрическая теория имеет еще два: α 1 и α 2 . Чтобы не было противоречий с наблюдениями, они должны быть достаточно малыми: α 1 ≤ 10 -4 и α 2 ≤ 10 -7 . Будем ждать повышения точности измерений, тогда, возможно, существование α 1 и α 2 (а значит и теории Хоржавы) будет подтверждено или опровергнуто.

Черные дыры. В ОТО черная дыра представляет объект, где центральная часть, обычно сингулярная, окружена сферической поверхностью, названной горизонтом событий. Его наличие связано с тем, что в ОТО существует предельная скорость - это скорость света. Основное свойство черной дыры состоит в том, что в ОТО никакая частица, никакое поле и даже световой сигнал не могут ее покинуть, то есть уйти за пределы горизонта событий.

В хронометрической теории есть также решения, описывающие объекты типа черных дыр. Однако вспомним, что в этой теории нет предельной скорости, возможно распространение взаимодействий со скоростью большей, чем скорость света и даже мгновенно. Если бы эта возможность была в ОТО, то само понятие горизонта событий потеряло бы смысл, поскольку появляется возможность покинуть объект, находясь и на горизонте событий, и под ним. При этом появляются противоречия, связанные с термодинамикой системы, такие как уменьшение энтропии. Сейчас не известны все решения для черных дыр в теории Хоржавы в силу ее молодости, однако среди известных есть такие, которые позволяют избежать этих осложнений. Оказывается, что в черной дыре в рамках хронометрической теории может быть так называемый универсальный горизонт. Он находится под горизонтом событий («ближе» к сингулярности) и замечателен тем, что поверхности постоянного времени, находящиеся под ним, не пересекают его. Это означает, что сигнал даже бесконечной скорости (мгновенный) не может выйти из-под этого промежуточного горизонта. А для таких объектов вышеупомянутые противоречия снимаются.

На рис. 12.2 представлена так называемая диаграмма Пенроуза черной дыры Шварцшильда. Точки i – и i + представляют всю временную бесконечность прошлого и всю временную бесконечность будущего, точка i 0 объединяет всю пространственную бесконечность. Прямая Bi + является горизонтом событий шварцшильдовой черной дыры - это видно из расположения световых конусов. Действительно, квадрат Bi + i 0 i – - это все внешнее пространство-время вне горизонта событий, в то время как треугольник i + Bi + - это пространство-время под горизонтом событий, откуда сигнал не может выйти во внешнюю область, и где ломаная линия - это сингулярность r = 0. На диаграмму шварцшильдовой дыры наложена диаграмма черной дыры хронометрической теории. Все кривые, соединяющие i 0 и i + , - это сечения постоянного поля хронона j = const , то же самое, постоянного времени (одновременности). Жирная дуга - это тот самый универсальный горизонт ζ= ζ + , под ним, ближе к сингулярности, дуги i + i + , соединяющие концы ломаной линии - это тоже сечения постоянного времени (одновременности). Ясно, что если сигнал в хронометрической теории распространяется даже мгновенно, то есть вдоль сечений одновременности, то он не сможет пересечь универсальный горизонт и покинуть хронометрическую черную дыру.

Космология. В масштабах Вселенной теория Хоржавы также имеет шанс заявить о своей жизнеспособности. Обсудим космологические решения в новой теории. Они будут примерно такими же, как в ОТО, с той разницей, что вместо обычной гравитационной постоянной G будет фигурировать эффективная гравитационная постоянная G E . Теперь вспомним модифицированный закон Ньютона, о котором говорилось выше. Там появляется своя эффективная гравитационная постоянная, отличная от G , обозначим ее G I . Сделаны оценки для разницы: |G I - G E | ≤ 0,1.

Нет запрета на то, что в будущем будет определена значимая величина для этой разницы, но так же возможно, что она будет исключена.

На основе ОТО разработана хорошо согласованная с наблюдениями теория космологических возмущений. Она позволяет, например, объяснить структуру , то есть распределение галактик и их скоплений в доступной наблюдениям области Вселенной. Тем не менее, если при повышении точности наблюдений будет обнаружена, скажем, анизотропия, не предсказанная ОТО, то это повод обратиться к теории Хоржавы. Теория Хоржавы настолько молода, что вряд ли ее саму и выводы, сделанные на ее основе, можно считать устоявшимися и всеми признанными. Несмотря на это, как теория в целом, так и выводы, представляются очень интригующими и важными.

Многомерные модели

Привет, Многомерие!
Виктор Бохинюк

На протяжении всего последнего столетия различные теории гравитации конструировались, так или иначе, как самостоятельные теории, т. е. «снизу». В последние десятилетия ситуация изменилась: построение теорий гравитации стимулируется развитием фундаментальных теорий, различные модели гравитации являются их частью и «выкристаллизовываются» в границах этих теорий. То есть их создание идет «сверху». Будучи претендентами на «теории всего», фундаментальные теории включают и гравитацию.

«Теория всего» должна работать при самых фантастических условиях, в том числе при планковских энергиях . Тогда все взаимодействия выступают как единое. Поэтому построение таких теорий в определенной степени - экстраполяция. А переход от теории, работающей при самых общих условиях, к условиям нашего мира будет ее приближением, которое называется низкоэнергетическим . Как минимум, наблюдательные эффекты в «приближеннойтеории всего» должны иметь место в наблюдаемом нами мире. «Гравитационная часть теории всего» в низкоэнергетическом пределе приобретает привычный для нас вид, и она должна выдержать все тесты, которые выдержала ОТО. Заметим, что некоторые варианты «теории всего» в низкоэнергетическом пределе в качестве гравитационной части содержат ОТО в точности.

Важное свойство фундаментальных теорий заключается в том, что, как правило, как на космологических масштабах, так и на масштабах микромира используется размерность пространства-времени больше, чем 4. Концепция многомерного пространства необходима, например, для теории суперструн, которая, по общему признанию, представляет собой наиболее перспективную теорию высоких энергий, объединяющую квантовую гравитацию и теорию так называемых калибровочных полей. Низкоэнергетические следствия этой теории требуют, например, (9+1)-мерного фундаментального пространства-времени (иногда (10+1)-мерного), в то время как другие размерности запрещены.

Но как же тогда быть, мы же ощущаем только 3 пространственных и одно временно е измерение? На микромасштабах дополнительные измерения компактифицированы (как бы свернуты в «трубочки»), и это причина, по которой они и не должны восприниматься нами. Такое пространство обладает симметриями по дополнительным измерениям, которым отвечают законы сохранения для различных зарядов, точно так же, как симметриям пространства Минковского отвечают законы сохранения для энергетических характеристик.

Уже на современном уровне технологий для подтверждения фундаментальных теорий могут оказаться важными эксперименты на ускорителях. Например, если на Большом адронном коллайдере в ЦЕРНе будут открыты так называемые суперсимметричные партнеры известных частиц - это будет означать, что идея суперсимметрии работает, а значит и более продвинутая теория гравитации, действительно, может быть построена в рамках теории струн.

Но может ли мир иметь протяженные (некомпактифицированные) измерения? Первые утверждения по этому поводу были сделаны в 1983 году Валерием Рубаковым и Михаилом Шапошниковым, продолжающими активно работать в этой области. Они показали, что в 5-мерном пространстве-времени (с 4-мерным пространством) вся материя может быть сосредоточена только на 3-мерном пространственном сечении. Возникает понятие моделей с бранами, где мир, в котором мы живем, эффективно сосредоточен в 3-мерном пространстве, и поэтому мы не чувствуем дополнительных протяженных пространственных измерений.

Некоторое время модели типа Рубакова-Шапошникова не привлекали большого внимания. Интерес к ним стал стимулироваться, в первую очередь, проблемой иерархии взаимодействий, к которой относится и чрезвычайная слабость гравитационного взаимодействия. Описывая взаимодействие элементарных частиц, о гравитационном взаимодействии можно забыть, как о совершенно несущественной поправке. Но если уж мы взялись объяснять устройство нашего мира, то должны ответить и на вопрос, почему гравитация так слаба.

Оказалось, что многомерные модели с протяженными дополнительными измерениями могут быть очень полезны для решения этих проблем. Таких моделей существует много. Пожалуй, самой известной является модель, предложенная в 1999 году американскими космологами Лизой Рэндолл и Раманом Сундрумом. На самом деле они предложили одну за другой две модели.

В первой из них 5-мерный мир с двух сторон ограничен двумя 4-мерными постранственно-временными сечениям, одно из которых - наша Вселенная (три пространственных измерения плюс одна временна я координата). Пространство между двумя бранами сильно искривлено вследствие их «механического» напряжения. Это напряжение приводит к тому, что все физические частицы и поля сосредоточены только на одной из бран и не покидают ее, за исключением гравитационного взаимодействия и излучения. Гравитация на этой бране есть, но очень слаба, и это тот мир , в котором мы живем. На другой же границе 5-мерного мира, недоступной нам, гравитация, наоборот, очень сильна, а вся материя значительно легче и взаимодействия между частицами материи слабее.

Во втором варианте модели Рэндолл и Сундрума обходятся без второй границы. Эту модель теоретики любят больше. Она позволяет превратить любимую ими теорию струн в пятимерном пространстве-времени в обычную квантовую теорию на его четырехмерной границе. Пространство в этой модели также сильно искривлено, и его радиус кривизны определяет характерный размер дополнительного пятого пространственного измерения. Окончательно признанной модели с бранами нет, они находятся в активной фазе разработок, выявляются проблемы, решаются, появляются новые, снова решаются и т. д.

На рис. 12.3 (слева) схематически представлен мир на бране, где свет (фотоны) распространяется внутри нее, но не может покинуть саму брану. На рис. 12.3 (справа) показано, что если бы наш мир был на бране, то он мог бы «плавать» в великом просторе дополнительных измерений, остающихся недоступными для нас, поскольку видимый нами свет (и никакие другие поля, кроме гравитационного) не может покинуть нашу брану. Могли бы существовать и другие миры на бранах, плывущие рядом с нами.

Еще одной идеей, ведущей к рассмотрению многомерных моделей, является так называемое AdS/CFT соответствие, которое возникает как одна из конкретных реализаций теории суперструн. Геометрически это означает следующее. Рассматривается многомерное (чаще, 5-мерное) антидеситтерово (AdS) пространство-время. Без деталей, AdS-пространство - это пространство-время постоянной отрицательной кривизны. Хотя оно и искривлено, но обладает таким же количеством симметрий, что и плоское пространство-время той же размерности, т. е. максимально симметрично. Далее, рассматривается пространственная бесконечно удаленная граница AdS-пространства, размерность которой, соответственно, на единицу меньше. Так, для 5-мерного AdS-пространства граница будет 4-мерной, то есть где-то аналогичной пространству-времени, в котором мы живем. Само же соответствие означает некую математическую связь этой границы с так называемыми конформными (масштабно инвариантными) полевыми теориями, которые могут «жить» на этой границе. Вначале это соответствие изучали только в чисто математическом плане, но около 10 лет назад осознали, что эту идею можно использовать и для изучения теории сильных взаимодействий в режиме сильной связи, где обычные методы не работают. С тех пор исследования, в которых привлекается (или изучается) AdS/CFT соответствие, только набирают обороты.

Из того, что сказано в предыдущем абзаце, для нашего рассмотрения важно, что изучается искривленное пространство-время - AdS пространство и его граница. В рабочих моделях рассматривают не идеальные AdS-пространства, а более сложные решения, которые ведут себя как AdS при асимптотическом приближении к границе. Такое пространство-время может быть решением той или иной многомерной теории гравитации. То есть идея AdS/CFT соответствия - это еще один из стимулов для развиватия многомерных теорий.

Одна из основных проблем моделей с бранами (и других многомерных моделей) - понять, насколько они близки к реальности. Опишем один из возможных тестов. Вспомним эффект квантового испарения черных дыр Хокинга. Характерное время испарения для черных дыр, которые возникают при взрывах массивных звезд, на много порядков превышает время жизни Вселенной; для сверх-массивных черных дыр оно еще больше. Но ситуация меняется в случае с 5-мерным пространством-временем Рэндолл и Сундрума. Черные дыры на нашей бране (она же наша Вселенная) должны испаряться гораздо быстрее. Оказывается, что с точки зрения 5-мерного пространства-времени черные дыры нашей Вселенной движутся с ускорением. Поэтому они должны эффективно терять энергию (испаряться в дополнение к обычному эффекту Хокинга) до тех пор, пока размеры уменьшающихся черных дыр остаются больше размера дополнительного измерения (что-то вроде трения об это измерение). Например, если бы характерный размер дополнительного измерения составлял 50 микрон, вполне измеряемые в лаборатории, то черные дыры в одну солнечную массу не смогли бы прожить больше 50 тысяч лет. Если бы такое событие произошло у нас на глазах, то мы бы увидели, как внезапно гаснут рентгеновские источники, в которых светилось вещество, падавшее на черную дыру.

Черные дыры в многомерной ОТО

Итак, шаг за шагом многомерные пространства становятся неотъемлемой частью различных физических моделей. Вместе с этим все больше внимания привлекает и обобщение ОТО на более чем четыре измерения (без других модификаций и дополнений), так как такая ОТО в некоторых вариантах сама является частью новых теорий. А это является одним из существенных стимулов для поиска и изучения возможных решений многомерной ОТО. В частности, интересными и важными являются решения для черных дыр. Почему?

1) Эти решения могут быть теоретическим базисом для анализа микроскопических черных дыр в струнных теориях, где они неизбежно возникают.
2) AdS/SFT соответствие связывает свойства D-мерных черных дыр со свойствами квантовой полевой теории на (D–1)-мерной границе, о чем мы кратко говорили выше.
3) Будущие эксперименты на коллайдерах предполагают рождение многомерных черных дыр. Их регистрация невозможна без представления об их свойствах.
4) И наконец, изучение решений классической 4-мерной ОТО начиналось с изучения черных дыр - решения Шварцшильда. Кажется естественным следовать логике исторического развития.

Интуитивно ясно, чем больше измерений, тем разнообразней будут свойства решений теории. В чем это проявляется в решениях для черных дыр? Разнообразие решений в многомерной ОТО обязано двум новым особенностям: нетривиальной динамике вращений и возможности формирования протяженных горизонтов событий. Обсудим их. В обычной ОТО с 4-мерным пространством-временем независимое вращение в 3-мерном пространстве может быть только одно . Оно определяется своей осью (или, что то же самое, плоскостью вращения, перпендикулярной к ней). В 5-мерной ОТО пространство (без времени) становится 4-мерным, но это свойство 3-мерного пространства иметь единственное независимое вращение сохраняется. А вот в 6-мерной ОТО, где пространство становится 5-мерным, возможны два независимых вращения , каждое со своей осью, и т. д. Другое новое свойство, которое имеет место для решений в размерностях больше 4-х - это появление протяженных горизонтов. Что под ними подразумевается? Это «черные струны» (одномерные) и «черные браны» разных размерностей.

Комбинация этих двух новых возможностей в разных вариациях привела к тому, что в рамках многомерной ОТО построена масса решений типа черных дыр, имеющих свою сложную иерархию. На рис. 12.4 приведены некоторые из этих решений. Если в 4-мерной ОТО горизонт событий известных черных дыр, как правило, имеет сферическую форму, то в многомерии ситуация существенно изменяется. Горизонты вырождаются в струны (как мы уже упомянули), могут быть в форме тора, и т. д. Следует иметь в виду, что изображения горизонтов на рис. 12.4 должны восприниматься в определенной степени символически, поскольку в реальности они представляют собой 3-мерные поверхности в 4-мерном пространстве.

Эти образования называют уже не «черными дырами», а «черными объектами». Они могут быть многосвязными, например, черная дыра, окруженная «черным тором» называется «черным сатурном». Часть из этих объектов определяется нестабильными решениями, для другой части оказывается невозможным корректно рассчитать сохраняющиеся величины, но многие не имеют таких дефектов. Однако несмотря на все разнообразие свойств (приемлемых или вызывающих сомнения) и вычурную форму некоторых объектов, их горизонты событий имеют все то же основное свойство, что и горизонт черной дыры Шварцшильда: история материального тела после его пересечения перестает быть доступной внешнему наблюдателю.

Эта картина выглядит весьма и весьма экзотично и, вроде, не имеет отношения к действительности. Но кто знает - когда-то решения для черных дыр казались далекими от реальности, а сейчас нет сомнений, что эти объекты повсеместно населяют Вселенную. Возможно, что мы живем на бране, а внешний 5-мерный мир включает что-нибудь типа «черного сатурна», и его влияние на брану будет обнаружено.

Биметрические теории и теории с массивным гравитоном

Вспомним, чтобы описать слабые гравитационные волны, мы разбивали динамическую метрику ОТО на метрику плоского пространства-времени и возмущения метрики. Оказалось, что возмущения в виде волн могут распространяться в пространстве Минковского, которое играет роль фонового. Фон может быть и искривленым, однако должен оставаться фиксированным, т. е. его метрика должна быть решением ОТО. В этой картине метрика фонового пространства-времени и метрические возмущения являются независимыми. Такое представление есть один из вариантов биметрической теории гравитации, где одна метрика известна и представляет фоновое пространствовремя, а вторая, динамическая, играет роль распространяющегося в нем гравитационного поля. В данном случае такое описание индуцировано самой ОТО.

Однако биметрические теории строятся и без ссылок на существование ОТО, а как независимые теории. Их характерные черты в том, что фоновая и динамическая метрики объединяются в эффективную метрику, которая в свою очередь определяет эффективное пространство-время, где распространяются и взаимодействуют все физические поля. Как правило, в пределе слабого поля и малых скоростей предсказания ОТО и биметрических теорий совпадают, и они удовлетворяют всем или большинству тестов, которым соответствует и ОТО. Из-за чего уделяется внимание биметрическим теориям? Их устройство, например, позволяет более просто и непротиворечиво определять сохраняющиеся величины. Также они имеют преимущества при квантовании.

Обычно для биметрических теорий существует хотя бы принципиальная возможность определить «подстилку» - фоновое пространство-время. Но такого может и не случиться. Например, без ссылок на слабость поля (то есть точно, без приближений) ОТО можно переформулировать как биметрическую теорию. В этом случае принципиально невозможно придумать эксперимент или тест, чтобы определить фоновое пространство-время, которое поэтому играет роль вспомогательного. А реальным и доступным для наблюдений является лишь эффективное пространство-время - оно же, собственно, пространство-время ОТО.

Такое биметрическое представление ОТО называется ее теоретико-полевой формулировкой, в том смысле, что гравитационное поле рассматривается на равных правах со всеми остальными физическими полями во вспомогательном (поскольку ненаблюдаемом) фоновом пространстве-времени.

Теперь вернемся к старшим классам школы и вспомним, что в учебниках по физике говорится о так называемом корпускулярно-волновом дуализме. Что это значит? Оказывается, распространение того или иного поля можно рассматривать в зависимости от условий либо как частицу, либо как волну. Снова обратимся к электродинамике. Низкочастотный сигнал с достаточной амплитудой будет зафиксирован, скорее, как волна с помощью колебаний зарядов в ее поле. С другой стороны, высокочастотный, но слабый сигнал, скорее, будет зафиксирован как частица, которая выбивает электрон в фотодетекторе. Частица фотон - безмассовая (с нулевой массой покоя). Обратимся к другой известной частице - электрону, он имеет массу. Но оказывается, электрону тоже можно сопоставить волну, несмотря на его «массивность».

После этого вспомним о гравитационных волнах, которые предсказаны ОТО. В рамках ОТО этим волнам соответствуют частицы с нулевой массой покоя - гравитоны. А можно ли построить такую теорию гравитации, в которой гравитон имеет ненулевую массу покоя ? Почему нет, если такая теория в слабополевом пределе и пределе малых скоростей будет совпадать с ОТО и удовлетворять ее тестам. История этих теорий начинается с массивной гравитации, предложенной швейцарскими теоретиками Маркусом Фирцем (1912–2006) и Вольфгангом Паули в 1939 году.

С тех пор варианты таких теорий появляются более или менее регулярно. В последнее время интерес к ним повысился в связи с тем, что варианты массивной теории гравитации возникают в фундаментальных теориях, таких как теория суперструн. В некоторых моделях с бранами более предпочтительным оказывается именно массивный гравитон. Массивные теории гравитации являются в определенном смысле разновидностью биметрических теорий: их общая черта состоит в том, что динамическое тензорное поле распространяется в фиксированном пространстве-времени, которое, как правило, принципиально наблюдаемо . Обычно в пределе, при стремления массы гравитона к нулю, такие теории переходят в ОТО. Если в пределе слабого поля и малых скоростей они совпадают с ОТО, то в сильных полях и на космологических масштабах расходятся с ОТО, предлагая другие эффекты. Например, может оказаться, что вместо решений для черных дыр появятся решения для сингулярностей без горизонтов («голых сингулярностей»), вместо расширяющейся вселенной появляются осциллирующие вселенные.

Проверить достоверность этих предсказаний напрямую пока невозможно, это остается предметом дальнейших исследований. До сих пор теории массивной гравитации имели общий изъян, их решения дают некие состояния с отрицательной энергией. Эти состояния называются «духами», объяснить их в рамках разумных представлений не получается, и поэтому они нежелательны. Однако буквально в последнее время появились варианты массивной гравитации без «духов».

Закон Ньютона

Закон всемирного тяготения после
обсуждения в третьем чтении был
отправлен на доработку...
Фольклор

Проверка закона Ньютона . Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно проверить в лабораторных условиях, живем ли мы на бране (или каком другом многомерном мире), хотя и не можем «выйти» в дополнительное измерение? Вспомним, что гравитация, в отличие от остальных взаимодействий, распространяется во всех пяти измерениях. Чтобы использовать этот факт, озадачимся геометрическим смыслом закона Ньютона. Как мы помним, он утверждает, что сила гравитационного взаимодействия падает обратно пропорционально квадрату расстояния ~ 1/r 2 . Теперь вспомним картинку из школьного учебника физики, где действие силы описывается силовыми линиями. На такой картинке сила на данном расстоянии r определяется плотностью силовых линий, «прошивающих» сферу радиуса r: чем больше площадь сферы, тем меньше плотность линий и, соответственно, сила. А площадь сферы пропорциональна r 2 , откуда прямо следует зависимость от расстояния в законе Ньютона. Но это в 3-мерном пространстве, где площадь сферы пропорциональна r 2 ! В 4-мерном пространстве площадь окружающей сферы будет пропорциональна r 3 , и, соответственно, изменится закон Ньютона - сила гравитационного взаимодействия будет падать обратно пропорционально кубу расстояния ~ 1/r 3 , и т. д.

Если бы закон обратных кубов имел место на масштабах Солнечной системы, то ясно, что именно он был бы сформулирован Ньютоном. Значит нужно его искать на малых масштабах. Вместе с тем, проверка закона Ньютона важна и для некоторых перспективных многомерных теорий, где дополнительные размерности компактификацированы (свернуты) и их размеры, конечно, меньше планетарных. Тем не менее, они могут достигать десятков микрометров. Когда Рэндолл и Сундрум только предложили свою теорию, закон Ньютона был проверен лишь до масштабов в метры. С тех пор ученые сделали несколько сложнейших (ввиду слабости гравитации) экспериментов с крутильными весами крохотных размеров, и сейчас лабораторные ограничения существенно снизились и приближаются к размерам компактификации.

Современными измерениями установлено, что размер дополнительного измерения составляет не более 50 микрон. На меньших масштабах закон обратных квадратов может нарушиться. На рис. 12.5 представлена схема крутильных весов для проверки закона обратных квадратов Ньютона. Сам прибор помещен в вакуумную колбу, тщательно изолирован от шумов и снабжен современной электронной системой детектирования смещений.

Ясно, что подобного рода эксперименты сопряжены с колоссальными технологическими трудностями, и дальнейший прогресс связывают с вынесением эксперимента в космос. Дело в том, что малые коррекции закона Ньютона ведут также к расчетному смещению планетных перигелиев (наряду с эйнштейновским). Лазерная локация Луны подтвердила эйнштейновское смещение с точностью до 10 –11 радиана в столетие. А вот уже в следующем порядке может проявить себя эффект некоторых многомерных моделей.

Первые попытки такой локации проводились в начале 60-х, как американскими, так и советскими исследователями. Но лазерный луч сильно рассеивался поверхностью, и точность измерений была невысока - до нескольких сот метров. Ситуация сильно изменилась после того как в рамках американских миссий «Аполлон» и советских «Луна» на Луну были доставлены уголковые отражатели, которые и используются до сих пор (к сожалению, советская программа по Луне была свернута в 1983 году).

Как это происходит? Лазер посылает сигнал через телескоп, направленный на отражатель, при этом точно фиксируется время, когда сигнал был излучен. Площадь пучка от сигнала на поверхности Луны составляет 25 км 2 (площадь уголковых отражателей около 1 м 2). Отраженный от прибора на Луне свет в течение примерно одной секунды возвращается в телескоп, далее происходит от порядка 30 пикосекунд. Время путешествия фотона позволяет определить расстояние, и это сейчас делается с точностью около двух сантиметров, иногда точность до стигает нескольких миллиметров. И это при расстоянии между Землей и Луной 384 500 км!

Модифицированная ньютонова динамика (МОНД). Но закон Ньютона может нарушаться на масштабах существенно больше планетных систем. Аномальные движения и вращения в звездных системах «спровоцировали» поиски «темной материи», в которую погружены галактики, скопления галактик и т. д.

А что если сам закон Ньютона нарушен на этих масштабах? Оригинальная теория МОНД была разработана израильским физиком Мордехаем Милгромом в 1983 году как альтернатива «темной материи». Отклонения от ньютоновского закона обратных квадратов по этой теории должны наблюдаться при определенном ускорении, а не на определенном расстоянии (вспомните теорию Хоржавы, где закон Ньютона изменяется из-за влияния скоростей).

МОНД успешно объясняет наблюдаемые движения в галактиках. Эта теория также показывает, почему отклонения от ожидаемого характера вращения наиболее велики в карликовых галактиках.

Недостатки исходной теории:

1) не включает релятивистских эффектов типа СТО или ОТО;
2) нарушаются законы сохранения энергии, импульса и момента импульса;
3) внутренне противоречива, так как предсказывает различные галактические орбиты для газа и звезд;
4) не дает возможности вычислить гравитационное линзирование скоплениями галактик.

Все это вызвало ее дальнейшее существенное совершенствование - с включением скалярных полей, приведения к релятивистскому виду и т. д. Каждое изменение, снимая одно возражение, вызывало другое, завершенной теории пока нет, но исследователи не теряют оптимизма.

Аномалия «Пионеров». Автоматические межпланетные станции «Пионер-10» и «Пионер-11» были запущены в 1972 и 1973 годах для исследования Юпитера и Сатурна. Они вполне справились со своей миссией сблизиться с этими планетами и передать данные о них, что называется, из первых рук. Последний сигнал от «Пионера-10» был получен в начале 2003 года после более чем тридцати лет непрерывной работы. В тот момент космический аппарат находился уже в 12 млрд километров от Солнца. На рис. 12.6 представлена фотография аппарата «Пионер-10».

Удивление вызвал тот факт, что как только «Пионеры» миновали орбиту Урана (примерно в 1980 году), на Земле стали замечать, что частота радиосигналов, посланных аппаратами, смещается в коротковолновую часть спектра, чего быть не должно, если их движение соответствует динамике Ньютона (влияние релятивистских эффектов ОТО на таком удалении от Солнца и планет значительно слабее).

С житейской точки зрения эффект, конечно, кажется мелочью - он в 10 млрд раз меньше, чем ускорение, которое мы испытываем со стороны гравитационного поля Земли. Но он значительно превосходит релятивистские эффекты ОТО! Наиболее банальными объяснениями загадочного явления могли бы стать, например, утечка остатков газообразного топлива из двигателей малой тяги, торможение на космической пыли, и т. д. Но эти эффекты временные, а аномалия стабильна на протяжении более чем 20-ти лет.

Некоторые ученые задались вопросом, не может ли аномалия «Пионеров» порождаться до сих пор неизвестные факторами, которые действуют лишь за пределами Солнечной системы (изменение закона Ньютона). Рассматривались даже модели с привлечением антиматерии, темного вещества и темной энергии.

Норвежский физик Кьелл Танген всесторонне проанализировал создавшуюся ситуацию и пришел к выводу, что ни одна из известных модификаций закона гравитации не в силах описать аномалию. Действительно, эти изменения не должны привести к изменению описания движения внешних планет Солнечной системы. Так, изменяя закон Ньютона, Танген неизбежно получал неправильные результаты для описания движения Урана и Плутона.

Загадка «Пионеров» была разрешена совсем недавно в результате 20-летней работы группы Вячеслава Турышева, выпускника ГАИШ МГУ, работающего ныне в Лаборатории реактивного движения (JPL) NASA в Пасадене. В разное время группа насчитывала от 20 до 80 сотрудников. Сравнительно недавно удалось в достаточной мере расшифровать чудом сохранившиеся дополнительные данные от «Пионеров», которые ранее были недоступны из-за архаичных форматов файлов и информационных носителей (магнитофонные ленты). Изначально анализировалось более 20 факторов, которые могли бы привести к эффекту. В распоряжении группы была хранившаяся в музее копия аппаратов-двойников - третий «Пионер», оставленный на Земле после предполетных тестов, позволивших отобрать самые качественные детали для космоса. Этот аппарат исследовался досконально.

Один за другим, по разным причинам, кандидаты на эффект отклонялись. Наконец осталась лишь одна возможная причина, которая и подверглась исследованию с пристрастием. Аппарат представляет собой параболическую антенну для связи диаметром около 3 метров, снабженную аппаратурой, помещенной в коробку несколько меньшего размера. Аппаратура работает так долго благодаря энергии атомного элемента, также помещенного в эту коробку. Как результат, коробка греется. Антенна все время ориентирована на Землю, так что коробка находится позади нее.

Группа Турышева составила компьютерную карту распределения тепла во всем аппарате. Оказалось, что обратная часть аппарата (противоположная от Земли) немного теплее, чем передняя. То есть в противоположную от Земли сторону аппарат покидают более энергичные фотоны, чем те, которые летят к Земле. Фактически работает «фотонный двигатель», который в данном случае тормозит «улет» аппаратов из Солнечной системы. Данные расчетов очень хорошо согласуются с данными наблюдаемого эффекта. Мощность этого «двигателя» сравнима с мощностью «отдачи» света фар автомобиля, которая тоже его тормозит как фотонный двигатель. Это образное сравнение привел сам Турышев.

Возникают вопросы. Почему эффект обнаружили только через 8 лет? Дело в том, что есть еще такое явление, как солнечный ветер. До тех пор, пока аппараты не достигли орбиты Урана, его влияние было превалирующим, и «аномалия» просто в нем тонула. При большем удалении эффект «аномалии» стал сильнее эффекта ветра и ее обнаружили. Почему считается, что аномальная сила направлена к Солнцу, ведь антенна ориентирована на Землю? Дело в том, что уже на удалении орбиты Урана, орбита Земли видится как кружок в небольшом угле раствора. В этом случае различить, куда смотрит антенна (на Землю, на другую точку земной орбиты, на Солнце) невозможно - это примерно одно и то же.

Подведем итог. Аномалия «Пионеров» объяснена обычными простыми явлениями и пересмотра закона Ньютона и вообще гравитационных теорий для ее объяснения не требуется.

Что даст дальнейшее повышение точности наблюдений

Точность очень часто обо-
рачивается неточностью.
Дмитрий Лихачев

Весьма важной является проверка постоянства фундаментальных констант. Для этого сравнивают разнообразные наблюдения за самыми отдаленными объектами во Вселенной с наблюдениями в Солнечной системе, а их - с результатами лабораторных экспериментов на Земле и даже с данными, полученными в геологии и палеонтологии. При анализе используются разные временны е шкалы, с одной стороны, обусловленные космологической и астрофизической эволюцией, с другой - основанные на современных атомных стандартах. Кроме этого, явления, существенно зависящие от этих констант, сопоставляются для разных эпох.

Для гравитации прежде всего важна гравитационная постоянная. Ее точное значение необходимо для определения параметров той или иной альтернативной теории или даже для определения ее жизнеспособности - вспомните теорию Хоржавы. От стабильности гравитационной постоянной зависит постоянство параметров планетных орбит. Исследования в Солнечной системе подтвердили неизменность гравитационной постоянной с относительной точностью от 10 –13 до 10 –14 в год. И точность измерений постоянно повышается.

Насколько важен в смысле построения новой теории поиск гравитационных волн от астрономических источников? В этом смысле сама по себе регистрация гравитационных волн вряд ли сразу даст много информации. Но факт регистрации окончательно подтвердит правоту современных исследований и можно будет отвергнуть совсем уж маргинальные теории. Лишь позже, когда станет возможным анализировать детали излучения (например, поляризацию), станет возможным использовать его для выбора или модификации гравитационных теорий. Определение скорости гравитационного излучения также даст ограничения на альтернативные теории, например, с массивным гравитоном; и т. д.

Нужен ли какой-то экспериментальный прорыв для создания новой теории или выбора из уже построенных? Да, конечно, необходимы новые и более точные эмпирические данные. Но это стоит называть не прорывом, а, скорее, результатом последовательных усилий. Положение дел таково: за последние 100 лет точность измерений увеличилась на 3–4 порядка. Современные технологии обещают существенно ускорить процесс. По разным оценкам ожидается, что в ближайшие 25–30 лет точность увеличится еще на 3–5 порядков. А это по многим прогнозам дает полные основания (и мы попытались это показать), если не в ближайшие годы, то в ближайшие 10–20 лет, ожидать потрясающе интересных и важных открытий. Кроме того, большинство исследователей считает, что такого повышения точности будет достаточно, чтобы определиться с новой теорией.