Решение задачи методом аддитивной свертки. Методы решения многокритериальных задач. Свертка критериев

Из презентаций

здесь x – альтернатива из множества Парето

fi (x ) – оценка альтернативы x по i -му критерию

Ci – коэффициенты относительной важности критериев

Использование линейной свертки

Это задачи, связанные с критериями

суммарного ущерба или прибыли ,

дохода ,

денежных или временных затрат

по годам планирования или по этапам

жизненного цикла экономических информационных систем и т. п.,

т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой

Квадратичная свертка

При решении практических задач ЛПР, как правило, ранжирует критерии в соответствии со своими предпочтениями. В этом случае в качестве интегрального критерия используются различные виды сверток

, линейная свертка ,

здесь x – альтернатива из множества W;

f i (x) – оценка альтернативы x по i-му критерию;

с i – весовые коэффициенты, с которыми оценки альтернатив входят в интегральный критерий. с i – коэффициенты значимости, или коэффициенты относительной важности критериев.

Коэффициенты с i можно найти, например, из специально организованной экспертизы: m экспертов должны расставить (ранжировать) критерии по важности:ранг 1 присвоить самому важному критерию и т.д. Пусть r ij – ранг, который присвоил j-ый экперт i-му критерию. Чтобы получить числовую оценку, введем новый коэффициент

.

Тогда коэффициент значимости i-го критерия с точки зрения j-го эксперта:

Обобщенные коэффициенты получим, усреднив оценки экспертов.

Пусть g j – компетентность j-го эксперта, тогда

.

Еще один метод назначения коэффициентов относительной важности основан на внесении предпочтений во множество критериев. Он состоит в следующем.

Пусть удается количественно выразить отношения предпочтения между критериями: критерий f i предпочтительнее критерия f j в h раз: . Тогда коэффициенты относительной важности этих критериев связаны между собой линейным уравнением C i =hC j . Это следует из теоремы:

Th. Если , то C i =hC j , C i >0, åC i =1.

Решая систему линейных уравнений, получим искомые коэффициенты.

Пример. Пусть варианты некоторой системы оцениваются по четырем критериям с пятибалльной шкалой. Значения критериевf i (х) даны в табл.13.

Пусть известно, что , f 2 ~ f 3 , .

Решение . Составим систему линейных уравнений для определения коэффициентов C i :

C 1 =1,5C 2 ; C 2 =C 3 ; C 3 =C 4 ; C 1 +C 2 +C 3 +C 4 =1;

Отсюда следует, что C 1 =3/8; C 2 =2/8; C 3 =2/8; C 4 =1/8.

В табл. 13 приведены значения интегрального критерия «Линейная свертка ».

Таблица 13

Оценки вариантов по критериям

f 1 f 2 f 3 f 4
Х1 Х2 Х3 Х4 Х5 Х6 2 5 4 5 5 3 4 3 3 2 5 5 4 3 4 4 3 4 4 4 4 3 3 4 3/8*2+2/8*5+2/8*4+1/8*5=29/8 32/8 28/8 30/8 29/8 28/8

По этому критерию лучшая альтернатива – Х 2 .

Задачи, в которых выполняются условия для использования линейной свертки, часто встречаются в практике. Это задачи, связанные с критериями суммарного ущерба или прибыли, дохода, денежных или временных затрат по годам планирования или по этапам жизненного цикла экономических информационных систем и т. п., т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой.

Свертка может быть не только линейной , но и квадратичной :

,

сверткой порядка t :

,

Величина t, стоящая в показателе степени, отражает допустимую степень компенсации малых значений одних равноценных критериев большими значениями других. Чем больше значение t, тем больше степень возможной компенсации.

Например, при , т.е. когда недопустима никакая компенсация и требуется выравнивание значений всех критериев (равномерное «подтягивание» значение всех критериев к их наилучшему уровню), интегральный критерий приобретает вид

.

Если t →0, т.е. требуется обеспечение примерно одинаковых уровней значений отдельных частных критериев, то интегральный критерий имеет вид

мультипликативная функция.

При t=1 имеем линейную свертку, при t=2 – квадратичную.

В задачах планирования ударов «по узкому месту» допустима компенсация увеличения одного из критериев сколь угодно большим уменьшением остальных, т.е. , тогда интегральный критерий можно использовать в виде

.

Используя в качестве интегрального критерия свертку, выбирают в качестве лучшей ту альтернативу, для которой F(x) имеет максимальное значение .

Замечание . Входящие в интегральный критерий целевые функции имеют разную размерность и выражены в разных шкалах. Поэтому необходимо предварительно выразить все оценки в одной однородной шкале. Целесообразно использовать для этого следующий прием

,

где f i * (x) оценка альтернативы x по i-му критерию в «родной» шкале, f i max и f i min максимальное и минимальное значения альтернатив по i -му критерию. Полученные оценки принадлежат отрезку и являются дробными, что не всегда удобно для расчетов. Поэтому можно, умножив все оценки по соответствующим критериям на наименьшее общее кратное, перейти в целочисленную шкалу. Сдвиг по шкале на общую для каждого из критериев величину позволит избавиться от отрицательных оценок.


Вариант8,19 Методы решения МКЗ при равнозначных критериях

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

Столкнувшись с необходимостью учета многокритериальности, исследователи стали искать возможные подходы к решению задач оптимального выбора при многих критериях.

Простейшим способом устранения многокритериальности це­лей является перевод задачи выбора в русло однокритериальности, например, путем объединения всех частных (локальных) показателей эффективности fj(x) в один общий (глобальный) критерий качества f(x)= F(f 1 (x) , f 2 (x) ,… f h (x)). Подобный прием носит название свертки критериев.

Каждый частный критерий отражает какое-то отдельное ка­чество варианта решения. Наилучший вариант должен характеризоваться наиболее удачным сочетанием всех этих отдельных качеств. Таким образом, поиск лучшего варианта решения сводится к отысканию экстремума единственной функции f(x)

x* arg max f(x) (3.11)

Остается только установить, как глобальное качество решения зависит от локальных качеств. Вид функции f(x) опреде­ляется тем, каким образом можно представить вклад каждого частного критерия f j (x) в общий критерий качества. Заметим, что для этого должна существовать возможность содержатель­ного сопоставления критериев.

Достаточно популярным способом служит запись глобального критерия в виде суммы локальных критериев (так называемая аддитивная свертка)

или в виде их произведения (мультипликативная свертка)

Формула (3.12) выражает принцип равномерной оптимальности. Им обычно пользуются, когда частные критерии эффективности имеют одинаковую размерность, например, выражены в денежных единицах. Тогда глобальный критерий качества решения будет представлять собой общую ценность варианта, которая слагается из ценностей его отдельных составляющих.

Формула (3.13) отражает принцип справедливого компромисса, в соответствии с которым общее качество решения должно равняться нулю, если хотя бы один из частных критериев эффективности принимает нулевое значение. Подобный подход применяется, например, для оценки общей надежности функциони­рования сложной системы, состоящей из многих частей, узлов и блоков. Интересно, что принцип справедливого компромисса был сформулирован еще английским математиком Ч. Доджсоном (более известным как английский писатель Льюис Кэрролл) в книге «История с узелками».

Существенным недостатком указанных способов свертки кри­териев является равная важность или значимость критериев для ЛПР, при которой низкие оценки по одним критериям можно компенсировать только за счет высоких оценок по другим кри­териям. Вследствие этого лучшим может оказаться вариант решения, сочетающий не самые лучшие критериальные оценки.

Чтобы избежать такого несоответствия, часто используют взвешенные свертки частных критериев эффективности вида

, (3.15),

,

где w j ≥ 0 - вес частного критерия f j (x) . Способ свертки частных критериев и значения их весов задаются ЛПР и отражают его предпочтения.

Некоторым промежуточным вариантом между крайне пессимистическими вариантами и крайне оптимистическими является критерии пессимизма-оптимизма (критерий Гурвица):

где 0≤β≤- «коэффициент пессимизма» или, если хотите, «коэффициент оптимизма». При β=1 оценка превращается в минимальную, а при β=0 она максимально оптимистична. Необходимо подчеркнуть, что определение значения β – это прерогатива руководителя, и с этой точки зрения, оценка чрезвычайно субъективна. А также

где a i – коэффициенты важности критериев (весовые коэффициенты), определяемые в большинстве случае субъективно; ; с – некоторое фиксированное значение критерия f(x i), например, некоторое его усредненное значение; f(x i) - частный i- й показатель (критерий) эффективности; f j (x i) – частный i- й показатель (критерий) эффективности j -й альтернативы (проекта).

Выбор того или иного вида свертки определяется характером взаимосвязей составляющих ее критериев (равнозначные, доминирующие и т.п.), а также некоторыми специальными ограничениями на область значений свертки, вытекающими из специфики конкретной задачи и предпочтений руководителя. Если частные показатели неоднородные, то они либо сводятся к однородным, либо коэффициенты a i учитывают не только важность, но и физическую размерность показателя.

Основная трудность, возникающая при формировании и использовании обобщенных критериев, заключается в сложности определения весовых коэффициентов, на которые возложена функция адекватного отражения степени важности критерия, его физической размерности и иногда других факторов. К недостаткам обобщенных критериев следует также отнести и то, что при оценке они не позволяют учитывать часто встречающуюся иерархическую зависимость результирующего показателя от значений частных показателей.

Однако это не означает, что СППР не должна использовать этот подход к оценке эффективности управляющих решений. Система предлагает его руководителю как один из возможных вариантов.

Многокритериальная оценка альтернатив решения может быть выполнена также на основе правил выбора по Парето . Здесь предпочтительным считается такой проект, для которого не существует другого проекта лучше данного хотя бы по одному показателю и не хуже него по всем остальным.

Описанные правила отбора не позволяют учесть относительную важность критериев оценки. Они нечувствительны к степени отличия значений критериальных показателей, и вероятность ошибки существенно повышается с ростом числа критериев.

Ряд методов анализа и отбора проектов основан на том, что критерий оценки формируется на основе характеристик того или иного выделенного аспекта реализации решения (главного критерия) -затраты, время, риски, вероятности успеха и т.п. В конечном итоге такой подход приводит к постановке и решению той или иной задачи математического программирования, в которой выделенный показатель выступает в качестве критерия, а к значениям остальных показателей предъявляются определенные требования, порождающие область ограничений.

В общем случае это приводит к решению многокритериальной задачи методом последовательных уступок, когда последовательно находится оптимальное решение по каждому из упорядоченных по важности критериев с назначением руководителем на каждом шаге решения задачи уступки величины по каждому из критериев, оптимизируемых на предыдущем шаге.

Пример . Требуется выбрать лучший вариант строительства предприятия из пяти предложенных вариантов A 1 – A 5 . Проект предварительно оценивается по четырем частным показателям эффективности:

f 1 – величина ожидаемой прибыли, которую будет давать предприятие;

f 2 – стоимость строительства предприятия;

f 3 – величина экологического ущерба от строительства;

f 4 – заинтересованность жителей района в строительстве.

Для простоты будем считать, что оценки по каждому из четырех критериев даются по шкале: 5, 4, 3, 2, 1, 0 баллов. Поскольку оценки по второму и третьему критериям необходимо минимизировать, а не максимизировать, как по остальным, то вместо них введем критерии f’ 2 =5- f 2 и f’ 3 =5- f 3 . По результатам экспертизы были получены следующие оценки качества проектов:

y 1 = (4; 3; 4; 3),

y 2 = (5; 3; 3; 3),

y 3 = (2; 4; 2; 4),

y 4 = (5; 3; 2; 3),

y 5 = (4; 4; 3; 4).

Сравним вектор y 1 с остальными векторами по отношению доминирования ≥ на множестве достижимости Y а. В данном случае пары векторов y 1 - у 2 , y 1 – y 3 , y 1 – y 4 , y 1 – y 5 несравнимы по отношению доминирования. Вектор y 1 запоминается как эффективный. Далее сравнивается вектор у 2 с векторами y 3 , y 4 , y 5 . Пары векторов у 2 - y 3 , у 2 - y 5 несравнимы. Так как у 2 > y 4 , вектор у 4 удаляется из рассмотрения как доминируемый, а вектор у 2 запоминается как эффективный. Для сравнения остаются векторы y 3 и y 5 . Поскольку y 5 > y 3 , то вектор y 3 удаляется из рассмотрения как доминируемый. В итоге остаются три вектора y 1 , y 2 и y 5 , образующие паретову границу Y* С Y a исоответствующие эффективные варианты А 1 , А 2 , А 5 , среди которых и следует сделать окончательный выбор.

Чтобы еще больше сузить паретово множество Y* и выделить единственный наилучший вариант решения, необходима еще какая-то дополнительная информация, которую может дать только ЛПР.

Важность критериев была задана нечеткими числами с функциями принадлежности следующего вида:

ВАЖНЫЙ (В)- m B ={0,4; 1/0,7; 0/1};

ОЧЕНЬ ВАЖНЫЙ (OB) - m OB ={0/0,7; 1/1};

НЕ ОЧЕНЬ ВАЖНЫЙ (НОВ) - m HOB = {0/0,1; 1/0,4; 0/7}.

Для оценки альтернатив использовались лингвистические значения:

Альтернативы получили следующие оценки по критериям:

Взвешенные оценки альтернатив R i имеют следующие функции принадлежности:

Оценки предпочтительности альтернатив равны: m(a 1) = 0,90, m(a 2) = 0,62, m(a 3) = 1,0. Лучшей альтернативой является a 3 , a худшей – а 2 .

Решение задачи методом анализа иерархий

На заданном наборе критериев была построена трехуровневая иерархия, на верхнем уровне которой определена цель выбора (с G). На втором уровне находятся обобщенные критерии: прибыль (с P) к и риск (с R) . На третьем уровне иерархии расположены перечисленные выше критерии с 1 , ..., с 5 . При этом критерии c 1 , с 2 , с 3 , входят в группу критерия c P , а критерии с 4 , с 5 - в группу критерия c R . Экспертные предпочтения и полученные приоритеты приведены в матрицах попарных сравнений:

В результате иерархического синтеза получены векторы приоритетов альтернатив:

Альтернативой с наименьшим риском является а 1 , а наибольшую прибыль обеспечивает а 3 . Эта же альтернативаимеет максимальный приоритет относительно цели выбора.

Сравнение полученных результатов

На рис. 4.9 приведены результаты решения задачи выбора рационального инвестиционного проекта, полученные различными методами.

Несмотря на то, что исходная информация во всех рассмотренных примерах является последовательной и непротиворечивой, полученные результаты заметно отличаются. Кроме описанных выше нечетких методов принятия решений, для сравнения использовался метод анализа иерархий, который обычно дает результаты, хорошо согласующиеся с интуитивными представлениями экспертов при рациональном подходе к принятию решений.

Несовпадение результатов, полученных разными методами, объясняется, с одной стороны, разными способами представления экспертной информации, а с другой стороны - различием подходов к принятию решений. Так, в основу метода анализа иерархий и метода отношений предпочтения заложен рационально-взвешенный подход, основанный на попарных сравнениях объектов и нормированных весовых коэффициентах. Максиминная свертка и лингвистическая векторная оценка являются реализациями пессимистического подхода, игнорирующего хорошие стороны альтернатив, когда лучшей считается альтернатива, имеющая минимальные недостатки по всем критериям. Аддитивная свертка предполагает оптимистический подход, когда низкие оценки по критериям имеют одинаковый статус по сравнению с высокими. Нечеткий вывод на правилах реализует эвристический подход.

Анализ приведенных результатов позволяет сделать следующие выводы:

1. Методы принятия решений на нечетких моделях позволяют удобно и достаточно объективно производить оценку альтернатив по отдельным критериям. В отличие от других методов добавление новых альтернатив не изменяет порядок ранее ранжированных наборов. При оценке альтернатив по критериям возможна как лингвистическая оценка, так и оценка на основе точечных оценок с использованием функций принадлежности критериев.

2. Основной проблемой многокритериального выбора с применением нечетких моделей является представление информации о взаимоотношениях между критериями и способы вычисления интегральных оценок. Методы, базирующиеся на разных подходах, дают различные результаты. Каждый подход имеет свои ограничения и особенности, и пользователь должен получить о них представление, прежде чем применять тот или иной метод принятия решений. Наиболее широкие возможности для представления информации дает эвристический подход.

3. Большинство нечетких методов принятия решений показывает слабую устойчивость результатов относительно исходных данных. Исследование рассмотренных методов показало, что наибольшей устойчивостью обладает метод, основанный на правилах.

Анализ нечетких методов принятия решений позволяет сформулировать требования к дальнейшим разработкам в этой области. Это развитие теоретических подходов к описанию сложных взаимоотношений между критериями, более широкое применение интеллектуальных методов на основе нечеткой логики, а также развитие комбинированных методов принятия решений с использованием нечетких представлений.

Основные понятия

1. Нечеткие множества.

2. Нечеткие числа.

3. Лингвистические переменные.

4. Лингвистический критерий.

5. Лингвистическая оценка.

6. Нечеткие операции и отношения.

7. Нечеткие отношения предпочтения.

8. Максиминная свертка нечетких множеств.

9. Нечеткий логический вывод.

10. Композиционное правило вывода.

11. Методология применения методов теориинечетких множеств.

12. Сравнительный анализ методов.

13. Практические результаты применения методовпринятия решений.

Контрольные вопросы и задания

1. Перечислите и дайте определения основным элементам теории нечетких множеств.

2. Дайте определение нечетким операциям, отношениям и свойствам отношений.

3. Охарактеризуйте постановку задачи многокритериального выбора альтернатив на основе пересечения нечетких множеств.

4. Составьте алгоритмы и программы многокритериального выбора альтернатив методом максиминной свертки.

5. Постановка задачи выбора альтернатив на основе нечеткого отношения предпочтения.

6. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе нечеткого отношения предпочтения.

7. Постановка задачи выбора альтернатив с аддитивным критерием.

8. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе аддитивной свертки предпочтений, заданных нечеткими числами.

9. Постановка задачи принятия решений на основе лингвистической векторной оценки.

10. Разработайте алгоритмы и программы для решения задачи многокритериального выбора с использованием метода лингвистического векторного критерия.

11. Постановка задачи многокритериального выбора с использованием правила нечеткого вывода.

12. Разработайте алгоритмы и программы для решения задачи выбора рациональной альтернативы на основе математического аппарата нечеткого логического вывода.

13. Рассмотрите применение принципов пересечения нечетких множеств в экономических и управленческих задачах принятия решений.

14. Разработайте методику применения метода нечеткого отношения предпочтения для проектирования и выбора конкурентоспособных экономических, технических и управленческих решений.

15. Поставьте задачи из области экономики, наилучшим образом формализуемые математическим аппаратом нечеткого логического вывода.

16. Решите одну задачу различными методами принятия решений, основанными на теории нечетких множеств. Проведите сравнительный анализ полученных результатов. Сделайте вывод о том, какой из методов дает наиболее адекватные результаты в сравнении с вашими представлениями.

Литература

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений: Пер. с англ. - М.: Мир, 1976. - 165 с.

2. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. - М.: Радио и связь, 1986. - 408 с.

3. Борисов А. П., Крумберг О. А., Федоров И. П . Принятиерешенийна основе нечетких моделей. - Рига: Зинатне, 1990. - 184 с.

4. Нечеткие множества в моделях управления и искусственного интеллекта/Под ред. Д. А. Поспелова. - М.: Наука, 1986. - 312 с.

В многокритериальных задачах, когда из первоначальной постановки не удается выделить критерий, преобладающий по важности над другими - главный критерий, довольно часто критерии искусственно комбинируют посредством агрегирующей функции, с параметрами - весовыми коэффициентами, назначаемыми каждому критерию согласно его относительной важности. Этот подход часто называют скаляризацией или сверткой векторного критерия. А получающуюся при этом параметризованную функцию, сводящую исходную многокритериальную задачу к однокритериальной, - обобщенным, агрегированным, глобальным критерием или суперкритерием. Наиболее широко распространенным видом обобщенного критерия является линейная свертка, когда глобальный критерий представляется в виде суммы (иногда произведения) частных критериев, умноженных на соответствующие весовые коэффициенты.

При применении этого способа определенные трудности вызывает правильный выбор весовых коэффициентов, проблематична интерпретация получаемых результатов. Использовать рассмотренный прием образования обобщенного критерия имеет смысл только в тех случаях, когда интерес представляет сумма отдельных критериальных функций. В общем же случае происходит просто замена одних неопределенностей другими, замаскированная математическими выкладками .

Существуют также случаи, когда довольно проблематично назначить каждому критерию определенный весовой коэффициент, соответствующий его важности относительно остальных. Тогда прибегают к свертке критериев где весовые коэффициенты не отражают относительной важности критериев, а изменяясь в определенных пределах, способствуют тем самым локализации точек в множестве Парето. При этом еще больше возрастает роль ЛПР, т.к. при выборе весовых коэффициентов он руководствуется в основном собственным опытом и интуицией, что также требует от него определенной квалификации.

Неоднократно отмечались ошибки и противоречия, которые делает человек при назначении весов критериев. Достаточно обстоятельный обзор различных методов назначения весов подводит к выводу, что не существует корректных методов решения человеком этой задачи. Такое поведение человека при решении многокритериальных зада является повторяющимся и устойчивым.

Имеются результаты экспериментов, из которых следует, что человек назначает веса критериев с существенными ошибками по сравнению с объективно известными, что назначаемые веса противоречат его непосредственным оценкам альтернатив и т.д. Хотя дискуссия о возможности использования весов в методах принятия решений еще продолжается, полученных данных уже достаточно, чтобы считать эту операцию достаточно сложной для ЛПР .

Суммируя сказанное можно сделать следующий вывод. Метод сверток применялся и применяется наиболее часто, но имеет труднопреодолимые недостатки :

  • - не всегда потеря качества по одному критерию компенсируется приращением по другому. «Оптимальное» по свертке решение может характеризоваться низким качеством некоторых частных критериев и в связи с этим будет неприемлемым;
  • - не всегда можно задать веса критериев. Зачастую известна лишь сопоставимая важность критериев, иногда нет никакой информации о важности;
  • - результат сильно зависит от предпочтений ЛПР, который чаще всего назначает веса, исходя из интуитивного представления о сравнительной важности критериев;
  • - величина функции цели, полученная по свертке, не имеет никакого физического смысла;
  • - многократный запуск алгоритма по свертке может давать только несколько различных точек Парето (или одну и ту же) даже в случае, когда в действительности этих точек очень много;
  • - данный подход не способен генерировать истинные Парето-оптимальные решения в условиях невыпуклых поисковых пространств, что является серьезным препятствием при решении многих практических задач.

Итак, для решения любой многокритериальной задачи необходимо учитывать сведения об относительной важности частных критериев.

В некоторых многокритериальных задачах частные критерии строго упорядочены по важности так, что следует добиваться приращения более важного критерия за счет любых потерь по всем остальным менее важным критериям. Но в большинстве случаев возникает ситуация, когда выделить главный или упорядочить критерии по важности не удается. Тогда зачастую прибегают к свертке критериев в обобщенный критерий. Применение данного подхода к формированию множества Парето, также как методов последовательных уступок и выделения основного частного критерия, связано с рядом возникающих при этом трудностей, что ставит вопрос о целесообразности использования подобных подходов и необходимости разработки методов, лишенных их недостатков.

К тому же, характерной чертой, объединяющей 3 рассмотренных подхода, является то, что в каждом из них задача многокритериальной оптимизации сводится к одной или нескольким задачам однокритериальной оптимизации.

Таким образом, теряется суть решаемой задачи, ее отличительная особенность - одновременный учет многих критериев. А сами методы должны работать многократно, чтобы сгенерировать множество точек Парето с тем, чтобы дальше выполнить оценку решения, значительно увеличивая затрачиваемые при этом вычислительные ресурсы.