Советы по выбору слухового аппарата. Виды слуховых аппаратов. Характеристики слуховых аппаратов II. Слуховой анализатор

12188 0

Успехи в технологии разработки СА определяются, прежде всего, совершенствованием их компонентов, что выражается в улучшении акустических и электрических характеристик, а также в миниатюризации и повышении надежности компонентов.

Источники питания

Как правило, чем больше усиление и выходной УЗД насыщения СА, тем большей должна быть емкость батареи и, соответственно, большим ее размер. Наиболее распространенными являются воздушно-цинковые батареи (до 63%), в то время как ртутные не превышают 36%, хотя и намечается тенденция к их вытеснению.

Применение других типов батарей - оксид-серебряных или никель-кадмиевых - весьма ограничено. Основным отличительным свойством батарей слуховых аппаратов является относительно пологая характеристика их разряда. Это означает, что в течение жизни батареи она не разряжается резко. Емкость батареи измеряется в мА/час.

При известном разряде тока жизнь батареи определяется по формуле: емкость, деленная на разряд тока. Формула эта справедлива для усилителей типа А, так как разряд тока постоянен и не зависит от установки громкости или входного уровня. В усилителях же типа Б время жизни батареи установить достаточно сложно.

В данном классе усилителей разряд тока - величина непостоянная. Кроме того, разряд имеет большие значения при высоких входных уровнях, высоких уровнях усиления, высоких уровнях окружающего шума, а также при сдвинутом в низкочастотную область диапазоне усиления. Для усилителей класса Б (пуш-пульных, с большим усилением и уровнями выхода) обычными являются значения разряда, равные 3-15 мА.

Преобразователи

К преобразователям СА относятся микрофоны и телефоны. Они активируются одним видом энергии, преобразуя его в другую форму.

Микрофоны. Они преобразуют звуковое давление в небольшие аналоговые электрические сигналы. В микрофонах, используемых в течение десятилетий в слуховых аппаратах, применялись различные принципы, в частности, углеродные и пьезоэлектрические микрофоны (1930). Электромагнитный микрофон с низким входным сопротивлением был впервые применен в 1946 г. в карманном СА и послужил основанием для разработки в начале 1950-х годов транзисторного усилителя. Ограничения данного класса микрофонов - плохая низкочастотная характеристика ответа и относительно высокая чувствительность к механическим повреждениям и вибрации.

Начиная с 1971 г., в СА используются электретные микрофоны, что обусловлено их высокой чувствительностью, прекрасным широкополосным частотным ответом и качеством звука, небольшими размерами, надежностью, низким внутренним шумом и низкой чувствительностью к механическим вибрациям.
Категории: микрофоны, используемые в СА, могут характеризоваться как по давлению (всенаправленные), так и по градиенту давления (направленные).

К дополнительному входу, используемому в СА, относится индукционная катушка. Она используется как при разговоре по телефону, так и в помещениях с индукционной петлей.

Кроме того, в большинстве современных СА имеется аудиовход, обеспечивающий подсоединение СА к внешним источникам звуков.

Телефоны (или приемники) предназначены для преобразования усиленного электрического сигнала в акустический или вибраторный сигнал на выходе. Соответственно, различаются телефоны воздушного и костного звукопроведения.

Усилители

Усилитель предназначен для усиления слабого электрического сигнала на выходе микрофона. Нередко процесс усиления разделяется на несколько стадий. В современных СА усиление обеспечивается использованием транзисторов, которые могут рассматриваться как полупроводниковые резисторы, регулирующие ток или действующие как преобразователь. Так в СА он преобразует ток, поступающий от батареи, в требуемый на выходе ток. При этом общее усиление контролируется входным током микрофона.

Как правило, усилители, используемые в СА, представляют собой монолитные интегральные схемы или же гибридные интегральные схемы, а также их комбинации.

Схемы, используемые в СА, имеют три или более стадий усиления. Финальная выходная стадия усилителя может подразделяться на классы А, В и D.

Класс А обычно используется в СА с низким усилением и выходным УЗД, в которых пиковое усиление не превышает 50 дБ. Они имеют постоянный разряд тока вне зависимости от уровня входного сигнала.

При необходимости использования большего усиления применяются пуш-пульные СА, в которых используются усилители класса В. В них имеются два раздельных устройства, обеспечивающих усиление отрицательных и положительных циклов входной волны. При отсутствии сигнала на входе отсутствует и разряд тока. Иными словами, они более экономичны. Выходная стадия усиления данного класса усилителей теоретически может обеспечить в 4 раза большую амплитуду выходного сигнала в телефоне, по сравнению классом А. Кроме того, усилители класса В обеспечивают больший выходной уровень на высоких частотах.

Усилители класса D - в отличие от предыдущих встроены непосредственно в телефон. Это позволяет запустить телефон относительно низкими уровнями переменного тока. К преимуществам интегральных схем данного класса относятся: 1) меньшее количество элементов и размеры; 2) меньший ток; 3) более высокий уровень насыщения; 4) повышенная надежность СА, обусловленная меньшим количеством внешних связей. Однако, учитывая то, что в современных усилителях класса В также используется минимальное количество внешних связей, отмеченные преимущества относятся прежде всего к классу А.

Наконец усилители подразделяются на одно- и многополосные. Используемые до 1987 года однополосные усилители обеспечивали лишь регулировку высоких и низких частот.

Многополосные усилители аналогичны графическим эквалайзерам. Они обеспечивают раздельную регулировку усиления раздельных частотных полос.

Регулировки

Регулировкам принадлежит особая роль в изменении характеристик СА. Наиболее часто используемой является регулировка усиления, применяемая больным и представляющая собой переменное сопротивление.

Существует также триммерный контроль усиления, представляющий собой регулировку усиления, используемую специалистом.

Электронная регулировка тембра - меняет частотный ответ СА и включает набор фильтров (конденсаторов, сопротивлений). Изменения частотного ответа регулируются дискретной установкой при помощи переключателя или плавной установкой при помощи отвертки. Набор фильтров имеет диапазон от простого пассивного фильтра первого порядка до активных фильтров более высокого уровня, обеспечивающих большее низкочастотное и высокочастотное подавление, а также фильтрацию отдельных полос в многополосных СА.

Регулировка выходного уровня звукового давления (SSPL90) используется для обеспечения максимального выходного уровня, не достигающего однако порогов дискомфорта пациента. Диапазон составляет 15-25 дБ.
Другие регулировки представлены автоматической регулировкой усиления, схемами подавления обратной связи (в основном подавлением высокочастотного усиления, однако иногда и фильтрами).

Ограничивающие системы

Предназначением каждого СА является усиление слабых звуков до достаточно громкого уровня, однако, без их чрезмерного усиления, достигающего дискомфортных уровней. Каждый слуховой аппарат имеет максимально достижимый УЗД (насыщение, перегрузка), определяемый телефоном, напряжением батареи, а также усилителем. На практике, однако, ограничения преимущественно определяются усилителем. Эти уровни могут регулироваться и устанавливаться ниже уровня насыщения.



Концепция линейного усиления

Усиление линейного аппарата отображено кривыми входа/выхода.

Линейное усиление означает, что выходной сигнал всегда пропорционален входному сигналу. При увеличении входного УЗД выходной УЗД увеличивается на ту же самую величину до достижения уровня насыщения, после чего дальнейшее увеличение входного УЗД не сопровождается изменением выходного. В большинстве линейных СА насыщение достигается при уровне входного сигнала 90 дБ УЗД.

Передаточная функция (характеристики входа/выхода) всегда изображается под углом в 45° к абсциссе, если и абсцисса, и ордината имеют одинаковую шкалу. Линейное усиление может быть описано как отношение 1:1 в рабочем диапазоне, с наклоном в 45° или постоянным усилением. В подобных системах при достижении уровня насыщения имеет место клиппирование пиков.



Ограничение выхода путем непосредственного его регулирования.

Клиппирование пиков является самым простым способом ограничения выходного уровня СА и определяется как удаление электронным путем пиков сигнала одной или обеих полярностей.

К преимуществам жесткого клиппирования относятся его конструктивная простота и малые размеры при обеспечении эффективного ограничения выхода.

К недостаткам жесткого клиппирования прежде всего следует отнести возникновение гармонических и интермодуляционных искажений над уровнем ограничения.
Данный вид клиппирования является разновидностью нелинейного усиления, которое характеризуется медленным увеличением выходного уровня при увеличении входного уровня.



Ограничение выхода путем регулирования усиления в зависимости от времени: схемы обратной связи, преобразования, адаптивные слуховые аппараты.

Автоматическая регулировка усиления

Данные системы имеют встроенную схему, автоматически уменьшающую электронное усиление СА как функцию величины сигнала, подлежащего усилению. Усиление уменьшается, однако способ этот отличается от клиппирования. Двумя основными задачами данной системы являются: 1) снижение усиления СА при повышении входного УЗД таким образом, что не достигается предел выходных характеристик, а искажения снижаются и 2) снижение динамического диапазона выходного сигнала и приведение его к динамическому диапазону поврежденного уха.

Уровень усиления контролируется автоматически. Данный процесс описывается также как компрессия имеющегося динамического диапазона в меньший диапазон. Иными словами, компрессия сводит к минимуму искажения при высоких уровнях входного сигнала, перераспределяет динамический диапазон речи, выполняет функции автоматического регулятора громкости, обеспечивает слуховой комфорт в шумной обстановке.

Кривая входа/выхода СА с автоматической регулировкой усиления может быть разделена на 3 части: линейный отрезок при низких входных значениях УЗД, когда прибавки во входном УЗД вызывают равные прибавки в выходном УЗД; отрезок, соответствующий компрессии, когда прибавки во входном УЗД вызывают меньшие прибавки в выходном УЗД; отрезок с ограничениями, когда прибавки во входном УЗД не оказывают существенного влияния на выходной УЗД.

Компрессия характеризуется следующими понятиями:

Ограничительный уровень - уровень, которым ограничен выходной уровень насыщения СА.

Колено компрессии - порог компрессии или порог автоматической регулировки усиления. Порог компрессии - это минимальный входной уровень, необходимый для срабатывания компрессии. Колено компрессии может быть охарактеризовано как точка, в которой кривая входа/выхода отстоит на 2 дБ по оси выходного УЗД от продолжения линейного участка кривой входа/выхода (при нелинейной компрессии). Уровень, на котором проявляется это колено, различает аппараты с высокими и низкими уровнями компрессии.

Коэффициент компрессии - степень компрессии представляет собой результат отношения величины изменения (увеличения) входного УЗД к величине изменения (увеличения) выходного УЗД в области действия компрессии.


Коэффициент компрессии может определяться также как отношение порога дискомфорта к величине динамического диапазона.

Постоянная времени. В процессе стабилизации при новых значениях усиления возникают временные задержки, обусловленные схемами обратной связи.

Время атаки (время срабатывания) относится к промежутку времени, необходимому для схемы обратной связи для установки нового значения усиления при высокоинтенсивных сигналах на входе. Как правило, время атаки равно 1 - 5 мс.

Время восстановления относится к промежутку времени, необходимому для схемы обратной связи для возвращения сниженных значений усиления к предыдущим величинам, когда прекращается подача высокоинтенсивных сигналовна вход. Время восстановления всегда больше времени атаки. Время восстановления может колебаться от 40 мс до нескольких секунд.

Компрессия может разделяться на низкопороговую и высокопороговую.

Нелинейная компрессия. При нелинейной компрессии коэффициент компрессии меняется в зависимости от входного уровня.

Рассматривая весь диапазон компрессии, можно вычислить средний эффективный коэффициент компрессии.

Большинство компрессионных технологий можно разделить на следующие категории: компрессия, регулируемая по входу (AGC-I), и компрессия, регулируемая по выходу (AGC-0).

Компрессия, регулируемая по входу. При компрессии сигнала до его усиления можно использовать низкие значения порога и коэффициента компрессии. Можно также использовать AGC-I для ограничения компрессии при высоких значениях порога и коэффициента компрессии. При этом следует иметь в виду, что положение регулятора громкости влияет на максимальный выходной уровень сигнала.


В некоторых СА используется фронтальная AGC-I (высокий порог для ограничения компрессии) и вторичная AGC-I для компрессии обычных сигналов ниже высокого порога срабатывания входной компрессии. Применяется также первичная нелинейная обработка сигнала, предполагающая использование низкого порога компрессии для восстановления нормального ощущения громкости.
В данном случае при компрессии сигнала после его усиления необходимо использовать высокие значения порога и коэффициента компрессии. Положение регулятора громкости минимально влияет на максимальный выходной уровень сигнала. Первичная линейная обработка не предназначена для восстановления нормального ощущения громкости, а используется в основном для уменьшения искажений (сравните с клиппированием) при высоких уровнях входного сигнала.

Ограничение компрессии

Ограничение компрессии может быть использовано как при компрессии, регулируемой по входу, так и при компрессии, регулируемой по выходу. При этом отсутствует необходимость в использовании специальной электронной схемы. Ограничение компрессии используется для предотвращения искажений, дискомфорта и болевых ощущений при громких звуках. Обычно применяются высокие значения порога и коэффициента компрессии. Данная функция может быть сравнена с "ударом по тормозам".

Следующей разновидностью компрессии является компрессия в широком динамическом диапазоне. В данном случае используется низкий порог компрессии - не выше 55 дБ. Иногда именуется компрессией в полном динамическом диапазоне.

Слоговая компрессия. Компрессия с низкими значениями порогов и коэффициентов характеризуется коротким временем срабатывания и отпускания - 50 - 150 мс.

Таким образом, ограничение усиления может происходить как при компрессии, регулируемой по входу, так и при компрессии, регулируемой по выходу, однако компрессия, регулируемая по входу, не обязательно ограничивает усиление, в то время как компрессия, регулируемая по выходу, всегда ограничивает усиление.

Компрессия в широком динамическом диапазоне всегда является компрессией, регулируемой по входу. В то же время, компрессия, регулируемая по входу, не обязательно является компрессией в широком динамическом диапазоне.

Слоговая компрессия всегда является компрессией в широком динамическом диапазоне, но последняя не всегда является слоговой.

Автоматическая обработка сигнала (ASP)

Представлена схема, включающая многообразие принципов обработки сигнала. До настоящего времени в подобных схемах предусматривалось ослабление усиления на высоких уровнях и/или увеличение усиления на низких уровнях без изменения частотных характеристик (фиксированный частотный ответ - FFR). В данных схема предусмотрено использование схем традиционной автоматической обработки сигнала (схем автоматической регулировки усиления или компрессии).


В современных схемах предусмотрено также и изменение частотного ответа как функции входного сигнала (частотный ответ, зависящий от уровня - LDFR).
Тип 1 (BILL) - повышение низких частот на низких уровнях и понижение их на высоких уровнях.


Тип 2 (TILL) - повышение высоких частот на низких уровнях и понижение их на высоких уровнях.

Тип 3 (PILL) - программируемое повышение (модификация частотного ответа) на низких уровнях, зависящее от уровня, в нескольких частотных полосах.

Схема К-амр

Наиболее распространенными схемами автоматической обработки сигнала являются схемы, обеспечивающие усиление низких частот на низких уровнях и снижение их на высоких. В отличие от этого, в К-амр на низких уровнях усиливаются высокие частоты, которые ослабляются на высоких уровнях. Как правило, данный тип используется у больных с высокочастотной тугоухостью.

Электроакустические искажения, влияющие на характеристики слухового аппарата.

Искажения

Гармонические искажения возникают при прохождении сигнала через нелинейный усилитель. Усилитель искажает сигнал за счет использования части энергии входного сигнала и передачи его в виде нового сигнала или продуктов искажений, расположенных на частотах, кратных частоте входного сигнала. Так, например, если входной сигнал с основной частотой, равной 500 Гц, проходит через нелинейный усилитель, то результатом будет образование новых сигналов, имеющих частоты кратные основной частоте, а именно, 1000, 1500 и 2000, 2500 Гц и т.д.

При разделении гармоник с основной частотой в выходном сигнале и измерении отношения общего значения гармоник и основной частоты определяется коэффициент гармонических искажений. Чем больше нелинейность усилителя, тем больше гармонические искажения и тем хуже качество усиленных звуков.

Интермодуляционные искажения - это отношение мощности выходного сигнала на частотах, отличных от поступивших к слуховому аппарату, и мощности входного сигнала. Интермодуляционные искажения могут быть продемонстрированы при рассмотрении двух входных частот (например, 500 и 700 Гц) равной амплитуды, однако не связанных гармонически. Как результат прохождения их через нелинейную систему мы имеем на выходе сложный ответ, состоящий как из этих частот, так и из их гармоник (500, 1000, 15000 и 2000; 700, 1400, 2100 Гц).

Дополнительно в ответе присутствуют частоты, соответствующие сумме и разнице двух указанных частот: 1200 и 200 Гц. При сложном входном сигнале, таком как речь, и при высоких уровнях окружающего шума, добавляется значительно большее количество частот.

Существуют также частотные (амплитудные или линейные) и фазовые искажения.

Транзиентные искажения - результат механического и электрического резонанса. Для исключения транзиентных искажений усиление должно быть на 9 дБ меньше оптимального ответа.

Приводим основные характеристики СА:
- Входной УЗД;
- Выходной УЗД;
- УЗД насыщения;
- Акустическое усиление;
- Частотный ответ;
- Частотный диапазон;
- Гармонические искажения;
- Эквивалентный уровень шума на входе;
- Ток батареи;
- Характеристики входа/выхода (для СА с АРУ);
- Динамические характеристики АРУ.

Шум слухового аппарата

Шум усилителя СА может суммироваться с входным сигналом, что изменяет его характеристики. Данный шум не относится к нелинейностям входного сигнала и обычно измеряется как соотношение сигнал/шум. Основным источником шума является микрофон. Дополнительные шумы могут возникать при неадекватном отключении батареи и схемы усилителя.

Обратная связь

Акустическая. Имеет место, когда выходной сигнал воспринимается микрофоном СА и усиливается. Она может быть также обусловлена неадекватным ушным вкладышем или трубкой, а также плохой акустической изоляцией преобразователей (и особенно при высоких значениях усиления) и наличием острых резонансных пиков в частотном ответе СА.

Механическая. Проявляется при механической вибрации телефона, передающейся к близко расположенному микрофону. С целью ее исключения используются резиновые амортизаторы-изоляторы, а также соответствующее расположение микрофона и телефона.

Магнитная. Имеет место при взаимодействии индукционной катушки с другими магнитными полями, например телефона.

Я.А. Альтман, Г. А. Таварткиладзе


С помощью слухового анализатора человек ориентируется в звуковых сигналах окружающей среды, формирует соответствующие поведенческие реакции, например оборонительные или пищедобывательные. Способность восприятия человеком разговорной и вокальной речи, музыкальных произведений делает слуховой анализатор необходимым компонентом средств общения, познания, приспособления.

Общая характеристика

Адекватным раздражителем для слухового анализатора являются звуки, т.е. колебательные движения частиц упругих тел, распространяющихся в виде волн в самых различных средах, включая воздушную, и воспринимающиеся ухом. Звуковые волновые колебания (звуковые волны) характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Человек различает звуковые волны с частотой от 20 до 20 000 Гц. Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (20 кГц) (ультразвуки), человеком не ощущаются. Звуковые волны, имеющие синусоидальные или гармонические колебания, называют тоном. Звук, состоящий из не связанных между собой частот, называют шумом. При большой частоте звуковых волн тон высокий, при малой - низкий. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила, зависящая от амплитуды звуковых волн. Сила звука или его интенсивность воспринимаются человеком как громкость. Ощущение громкости нарастает при усилении звука и зависит также от частоты звуковых колебаний, т.е. громкость звучания определяется взаимодействием интенсивности (силы) и высоты (частоты) звука. Единицей измерения громкости звука является бел, в практике обычно используется децибел (dB), т.е. 0,1 бела. Человек различает звуки также по тембру («окраске»). Тембр звукового сигнала зависит от спектра, т.е. от состава дополнительных частот (обертонов), которые сопровождают основной тон (частоту). По тембру можно различить звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Чувствительность слухового анализатора определяется минимальной силой звука, достаточной для возникновения слухового ощущения. В области звуковых колебаний от 1000 до 3000 в 1 секунду, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот получила название речевой зоны. В данной области воспринимаются звуки, имеющие давление меньше 0,001 бара (1 бар составляет приблизительно одну миллионную часть нормального атмосферного давления). Исходя из этого в передающих устройствах, чтобы обеспечить адекватное понимание речи, речевая информация должна передаваться в речевом диапазоне частот.

Отделы слухового анализатора

Периферическим отделом слухового анализатора, превращающим энергию звуковых волн в энергию нервного возбуждения, являются рецепторные волосковые клетки кортиева органа (орган Корти), находящегося в улитке. Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха. Внутреннее (звуковоспринимающий аппарат), а также среднее (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.

Наружное ухо за счет ушной раковиныобеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая в свою очередь сочленена со стремечком. Стремечко прилегает к мембране овального окна. Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм 2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна примерно в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн примерно в 2 раза - следовательно, происходит такое же усиление звуковых волн на овальном окне. Таким образом, среднее ухо усиливает звук примерно в 60-70 раз. Если же учитывать усиливающий эффект наружного уха, то эта величина вырастает в 180-200 раз. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами - мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым рецепторный аппарат внутреннего уха от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга.

В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Внутреннее ухо представлено улиткой -спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на три узкие части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна, соединяется с нижним каналом (барабанная лестница) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилимфой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковосприни- мающий аппарат - орган Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора. Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно расширяется, достигая у геликотремы 0,5 мм. Над кортиевым органом лежит текториальная (покровная) мембрана соединительнотканного происхождения, один край которой закреплен, второй - свободен. Волоски наружных и внутренних волосковых клеток соприкасаются с текториальной мембраной. При этом энергия звуковых волн трансформируется в нервный импульс.

Проводниковый отдел слухового анализатора представлен периферическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового (или кохлеарного) нерва, обра образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый нейрон). В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

Корковый отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная извилина, 41-е и 42-е поля по Бродману). Важное значение для функции слухового анализатора имеют поперечные височные извилины (извилины Гешля).

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие определенных звуковых сигналов.



Значительная часть информации поступает к оператору в форме звуковых сигналов. Особенно широко звуковые сигналы используются при передаче речевых сообщений. С помощью звуковых сигналов оператор получает до 10% всей поступающей информации.

Основными параметрами звуковых колебаний являются интенсивность, частота и форма, которые отражаются в слуховых ощущениях как громкость, высота, тембр. Интенсивность звука оценивается по звуковому давлению, которое измеряется в динах на квадратный сантиметр.

Так как диапазон давлений, ощущаемых ухом, чрезвычайно широк (от 2·10 -4 до 2·10 2 дин/см 2), интенсивность звука выражается в логарифмических единицах по отношению к уровню I 0 =2·10 -4 дин/см 2 . Такой единицей является децибелл

где I - величина измеряемого звукового давления.

Частота звуковых колебаний измеряется в герцах. Один герц есть частота такого звукового колебания, период которого равен одной секунде. Диапазон частот, воспринимаемых ухом, лежит в пределах от 16 до 20000 гц. Особое значение в этом диапазоне имеют частоты от 200 до 3500 гц, соответствующие спектру человеческой речи.

Все звуки могут быть разделены на простые и сложные. Колебания, происходящие с одной частотой, называются простыми звуками или чистыми тонами. Все остальные звуки рассматриваются как сложные. Нерегулярные звуковые колебания называются шумом. Особо выделяется белый шум - звук, содержащий все слышимые частоты.

Интенсивность, частота и форма являются физическими (объективными) характеристиками звуковых волн, однако ими не могут быть еще количественно оценены вызываемые звуком ощущения. Поэтому для описания слухового ощущения необходимо ввести специальные параметры и единицы их измерения. Субъективными аналогами рассмотренных физических характеристик являются громкость, высота и тембр звука. Хотя эти субъективные параметры не могут быть столь же измерены, как физические, они необходимы для иллюстрации связей между звуком и слуховым ощущением.

Громкость - характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах, фон численно равен уровню звукового давления в децибелах для чистого тона частотой 1000 гц, воспринимаемого как равногромкий с данным звуком. На рис. 26 приведены кривые равной громкости от нуля до 120 фонов (через каждые 20 фонов) в диапазоне частот от 20 до 20000 гц. Из рисунка видно, что за пределами звукового диапазона для получения той же громкости требуется большая интенсивность звука. Это значит, что звуковой диапазон обладает наибольшей чувствительностью. Абсолютные пороги слухового анализатора зависят во многом от частоты звукового сигнала. Значение нижнего и верхнего порогов, а также область речи показаны на рис. 26. Верхний абсолютный порог составляет 120-130 дб, область восприятия речи - 60 ¾ 100 дб,

Дифференциальный порог по интенсивности зависит от исходной интенсивности сигнала и частоты. В звуковом диапазоне он составляет примерно 0,1 от исходной интенсивности сигнала и увеличивается за пределами этого диапазона.

Дифференциальный порог по частоте также зависит от частоты и интенсивности сигнала. В звуковом диапазоне он составляет 3-5 гц при интенсивности не менее 10 дб. По мере увеличения частоты величина порога увеличивается и составляет в среднем 0,3% от частоты звуковых колебаний, т. е. различение звуков по частоте у человека более совершенно, чем по интенсивности.

Существенное влияние на пороги оказывает длительность сигнала. В особенности это проявляется при длительностях т, не превышающих 150-200 мсек. При таких длительностях значения порогов определяются энергией сигнала, т. е. произведением l·τ. Таким образом, уменьшение длительности в некоторое число раз приводит к такому же увеличению величин дифференциальных порогов и уменьшению абсолютных порогов.

Минимальная длительность звука, при которой оценивается его качество, равна 20-50 мсек. Оценка качества сигналов меньшей длительности крайне затруднена: звук воспринимается как «щелчок».

Пороги обнаружения зависят также от уровня шума. Эти зависимости для полной тишины (ПТ) и уровней шума от 10 до 60 дб приведены на рис. 27.

Слуховой анализатор обеспечивает отражение не только интенсивности, частоты и длительности звуковых колебаний, но и положения источника звука в пространстве: его расстояние и направление относительно субъекта.

Точность определения направления зависит от частоты. Для низких частот порог различения направления в горизонтальной плоскости равен 10-11°, с увеличением частоты он возрастает. Расстояние наиболее точно определяется для движущихся объектов.

Специфическим видом слухового восприятия есть восприятие речевых сообщений. Речь является наиболее эффективным средством передачи ин формации человеку.

Знание характеристик восприятия речевых сообщений необходимо для решения двух видов задач: для определения принципов разработки аппаратуры, предназначенной для передачи речевых сообщений, и для определения принципов организации речевых сообщений. Первая задача специфична для техники связи, вторая - для инженерной психологии и научной организации труда.

Речь является комбинацией сложных звуков, меняющихся по частоте и интенсивности. Наиболее высокой интенсивностью характеризуются гласные звуки, согласные-менее интенсивны. Интенсивность звука при переходе от наиболее громкой гласной к самой тихой согласной меняется на 30-40 дб. Общий диапазон изменения интенсивности речи составляет 60-100 дб, что соответствует средней мощности речевого сигнала в 10-20 мквт.

Важнейшей характеристикой восприятия речи является ее разборчивость. В условиях тишины основной характеристикой, влияющей на разборчивость речи, является интенсивность. Частота голоса не оказывает существенного влияния на разборчивость: высокий и низкий голос понимаются одинаково хорошо. При интенсивностях менее 40 дб некоторый процент слов не воспринимается, при интенсивностях менее 10-15 дб речь вообще не воспринимается. При N > 40 дб воспринимаются практически все слова. Наиболее оптимальный диапазон 60 ¾ 100 дб.

Основным фактором, влияющим на разборчивость речи в условиях шума, является отношение мощности речи к мощности шума. На рис. 28 показана зависимость процента понятых слов от соотношения мощности речи и шума. Обычно речь бывает понятной, если интенсивность речи превышает интенсивность шума на 6 дб.

Большое значение для разборчивости речи имеет организация речевого сообщения. В условиях шума двухсложные слова опознаются на 30% лучше, чем односложные, а трехсложные - на 50%. Слова с ударением на последнем слоге опознаются лучше, чем с ударением на первом. Важным фактором, влияющим на разборчивость слов, является также их вероятностная характеристика: чем чаще встречается слово, тем лучше оно опознается. Понимание речевых сообщений зависит от темпа их передачи. Оптимальным темпом считается 120 слов в минуту. Длина фразы не влияет на восприятие и понимание речи, если не превышает 10-11 слов. При большей длине существенно снижается эффективность приема, что объясняется ограниченностью объема оперативной памяти (7-9 слов в фразе).

Технология изготовления современных слуховых аппаратов постоянно совершенствуется. Благодаря ученым-аудиологам и инженерам разрабатываются слуховые аппараты значительно меньшего размера, обладающие более качественным звуком.

Сегодня существуют типы слуховых аппаратов, которые различаются по таким характеристикам:

  • по способам проведения звука - воздушной и костной проводимости;
  • по усилению входящего сигнала - линейные и нелинейные;
  • по способам настройки (регулировки) - с ручной настройкой и цифровым программированием;
  • по месту расположения - заушные (открытые, RIC) , внутриушные (внутриканальные, невидимые), в очковой оправе, карманные;
  • по мощности (силе звука) - малой и средней мощности, мощные и сверхмощные;
  • по методу обработки сигнала - цифровые и аналоговые.

Все виды слуховых аппаратов обладают рядом собственных преимуществ, которые зависят от размера использующейся в аппарате технологии, а также дизайна и удобства пользования.

Все существующие на сегодняшний день слуховые аппараты можно разделить на две основные группы:

По месту расположения в ухе (внутриканальные, внутриушные, заушные)

Заушный слуховой аппарат.

Заушные слуховые аппараты - простые, надежные в использовании устройства. Размещаются за ухом человека и великолепно компенсируют все возможные нарушения слуха. Подходят для любой возрастной категории.

Аппарат "открытое ухо".

В классификации заушных слуховых аппаратов выделяются новые аппараты, так называемого открытого типа (OpenFit - с английского "открытое протезирование").

Корпус слухового аппарата размещается позади уха, а звуководная трубочка, соединяющая слуховой аппарат с ухом, настолько тонкая, что практически не видна. Такая форма делает слуховой аппарат менее заметным даже по сравнению с аппаратами внутриушного типа. Кроме прочего слуховые аппараты открытого типа имеют современный дизайн, улучшающий визуальное восприятие прибора. Технологически такие слуховые аппараты уникальны, т.к. используются только самые современные электронные микросхемы.

Внутриушные слуховые аппараты ITE - компактные, приборы, которые размещаются в ухе. Они более крупные, чем внутриканальные модели, предназначены для компенсации более глубоких нарушений слуха (в речевой зоне до 100 дБ). Изготовленный по индивидуальному слепку корпус, точно повторяет строение уха, что гарантирует максимальный комфорт владельцу.

Внутриканальные слуховые аппараты CIC и невидимые IIC - располагаются внутри слухового прохода. Это наиболее миниатюрные и малозаметные модели, которые благодаря своему глубокому залеганию, обеспечивают превосходное качество звука, отличную разборчивость, четкость речи и наиболее естественное звучание. Корпус для такого прибора изготавливается всегда индивидуально и полностью повторяет все особенности строения ушного канала. Размещенный глубоко в ухе, такой аппарат практически незаметен окружающим и благодаря новым технологиям может компенсировать даже 4-ю степень тугоухости.

Телефон в ушном канале RIC

Телефон в ушном канале RIC - это самые миниатюрные заушные слуховые аппараты, новейшее достижение в области разработки и производства слуховых аппаратов. В таких приборах ресивер (телефон) расположен в специальном корпусе, и помещается непосредственно в ушной канал, чтобы стать максимально незаметным и удобным. Такие аппараты еще называют аппаратами-невидимками.

Карманные слуховые аппараты ушли в прошлое, уступив место заушным моделям.

Аппараты в очковой оправе имеют ограниченное применение по причине своего неудобства.

По способу обработки звукового сигнала (аналоговые и цифровые).

Современное слухопротезирование основано на использовании только цифровых технологий в производстве слуховых аппаратов, так как цифровые слуховые аппараты имеют ряд несомненных преимуществ в сравнении с аналоговыми технологиями.

Так, например:

  1. многоканальность - это необходимая возможность получить максимальный результат от слухопротезирования в случае частотно-неравномерного снижения слуха (разного на разных частотах).
  2. наличие двух или трех микрофонов, меняющих свою направленность - улучшает разборчивость речи в шуме.
  3. многопрограммность - слуховой аппарат настраивается на работу в различных акустических ситуациях, как то шум, речь в шуме, речь в далеке и т.д.
  4. шумоподавление - очень важно для улучшения разборчивости речи в шуме и также для общего комфорта.
  5. устранение неприятного звучания собственного голоса.
  6. подавление шумов низкого входного сигнала (шум от компьютера, шум улицы).
  7. управление аппаратом с помощью пульта дистанционного управления.
  8. устранение неприятного свиста (обратной связи), обязательно возникающего при работе слухового аппарата.

Профессиональные знания и опыт работы специалиста, современная аппаратура для диагностики слуха, высокое качество слуховых аппаратов дают возможность каждому пациенту улучшить звуковое восприятие мира, чтобы быть социально адаптированным.

Технические характеристики слуховых аппаратов отличают классы и модели аппаратов и являются основным показателем эффективности приборов. Благодаря направленной микрофонной системе и системе распознавания речи, человек со слуховым аппаратом может отличать речь собеседника от фоновых шумов. Системы аппарата автоматически определяют направление основного источника шума, настраивая чувствительность микрофона так, чтобы восприятие фоновых шумов было минимальным, а восприятие речи - максимальным.

Слуховой аппарат является специальным приспособлением, которое предназначено для усиления слуха. Он увеличивает силу звуков в несколько раз, а также модулирует их, поэтому человек может нормально слышать.

Как же правильно и грамотно выбрать слуховой аппарат, чтобы не ошибиться? Давайте разбираться.

В настоящее время существуют различные виды слуховых аппаратов, которые помогают человеку нормально адаптироваться в социуме.

Однако выбор прибора будет зависеть от следующих факторов:

  • технические характеристики;
  • стоимость;
  • вид нарушения слуха, который диагностируется с помощью современных дополнительных методов исследования;
  • косметические пожелания пациента (некоторые модели совершенно незаметны в процессе эксплуатации).

Виды слуховых аппаратов

Классификация слуховых аппаратов учитывает различные характеристики. Так, по способу ношения они бывают следующими:

  • Нательный
  • Заушный
  • Внутриушный
  • Внутриканальный.

Проводимость звуков обеспечивается как за счет колебаний воздуха, так и за счет костных колебаний. На этом основаны разные принципы работы слуховых аппаратов. Согласно этой характеристике, выделяют приборы костной или воздушной проводимости. Первые используются, когда нарушается только проведение звука, а его восприятие остается нормальным. Вторые можно использовать как в одном, так и в другом случае.

Также слуховые аппараты могут классифицироваться с учетом их настройки. Поэтому они бывают как непрограммируемые, так и программируемые. В первом варианте пациент их настраивает самостоятельно. В программируемых устройствах имеется специальный кабель, который подключается к компьютеру, а только затем настраивается.

Усиление слухового сигнала может производиться двумя основными способами. С учетом этого выделяют линейные и нелинейные слуховые аппараты. В линейных происходит постоянное усиление звукового сигнала, а в нелинейных усиление зависит от силы поступающего звука. Это означает, что незначительные звуки усиливаются постоянно, а сверхсильные, наоборот, при определенном значении постепенно снижаются, что положительно отражается на качестве звукового сигнала.

Мощность звука в приборе также может быть различной. От нее будет зависеть качество воспринимаемого звукового сигнала.

В зависимости от этой характеристики слуховые аппараты бывают следующих видов:

  • маломощные;
  • среднемощные;
  • мощные;
  • сверхмощные.

Обработка звукового сигнала может быть цифровой и аналоговой. Соответственно этому выделяют два основных вида слуховых аппаратов – цифровые и аналоговые. В настоящее время используются, как правило, только цифровые приборы, которые выгодно отличаются от аналоговых по качеству воспринимаемого звука.

Однако данная статья носит ознакомительный характер, поэтому помощь врача-сурдолога является незаменимой. Он поможет выбрать наиболее подходящий вид прибора, чтобы получить звук максимально хорошего качества. Поэтому не стоит полагаться на свою интуицию и знания, пренебрегая помощью врача.

Сравнительные характеристики

Сравним некоторые характеристики слуховых аппаратов в зависимости от вида, которые влияют на качество слуха у пациента. Для заушного аппарата характерны следующие особенности:

  • простота в использовании;
  • надежность прибора;
  • располагаются за ухом пациента, поэтому могут причинять некоторые косметические неудобства;
  • заушные слуховые аппараты могут использовать люди разного возраста, то есть ограничений в этом отношении нет.

Существует разновидность слухового аппарата – «открытое ухо». Он также размещается позади ушной раковины, но звукопроводящая трубочка, идущая в слуховой проход, незаметна. Она выполнена из специального материала. Также эти устройства имеют следующие преимущества:

  • современный дизайн;
  • хорошие косметические характеристики;
  • значительное улучшение качества воспринятого звука;
  • они используют в своей работе микросхемы электронного типа с учетом современных достижений науки.

Внутриушные аппараты имеют такие характеристики, как:

  • максимальная компактность для размещения прибора на ушной раковине;
  • хорошие косметические качества;
  • основное показание для их использования – это грубые нарушения слуха;
  • готовятся по индивидуально снятому слепку, поэтому точно повторяют изгибы ушной раковины — это позволяет максимально хорошо улавливать звуки.

Внутриканальный аппарат имеет самые лучшие косметические свойства, так как располагается внутри наружного слухового прохода, поэтому является практически невидимым. Помимо этого ему присущи и такие положительные качества, как:

  • максимально хорошее качество звука, так как устраняются посторонние звуковые сигналы;
  • хорошая разборчивость речи;
  • четкое восприятие звуков;
  • звучание, максимально приближенное к естественному;
  • индивидуально изготовленный корпус;
  • этот прибор позволяет воспринимать речь и другие звуки даже при четвертой степени тугоухости.

При выборе звукоусиливающего устройства следует учитывать определенные характеристики. От них зависит как качество звуковых сигналов, так и стоимость прибора. Как правило, чем лучше воспринимаются звуки, тем дороже устройство.

Основными особенностями, которые должны быть учтены (именно поэтому требуется помощь врача-сурдолога), являются следующие:

В заключение необходимо отметить, что выбор звукоусиливающего устройства — очень ответственное дело, поэтому им должен заниматься специалист (врач-сурдолог). Чтобы человек с нарушением слуха максимально естественно воспринимал те или иные звуки, необходимо провести диагностику, для которой используются самые современные приборы. Она позволяет выявить, какое именно звено в слуховом анализаторе страдает.

С учетом этого будет произведен врачом выбор того или иного прибора. Последние бывают различных моделей и классов в зависимости от своих технических характеристик, которые накладывают существенный отпечаток на стоимость прибора. Это означает, что чем более совершенен слуховой аппарат и чем лучше качество звука, тем дороже он выйдет.