Статистическое дискретное распределение. Полигон. Статистические ряды распределения, их значение и применение в статистике

Особую форму группировки данных представляют так называемые статистические ряды, или числовые значения признака, расположенного в определенном порядке. В зависимости от того, какие признаки изучаются, статистические ряды делят на атрибутивные, вариационные, ряды динамики, регрессии, ряды ранжированных значений признаков и ряды накопленных частот. Наиболее часто в психологии используются вариационные ряды, ряды регрессии и ряды ранжированных значений признаков.

Вариационным рядом распределения называют двойной ряд чисел, показывающий, каким образом числовые значения признака связаны с их повторяемостью в данной выборке. Например, психолог провел тестирование интеллекта по тесту Векслера у 25 школьников, и сырые баллы по второму субтесту оказались следующими: 6, 9, 5, 7, 10, 8, 9, 10, 8, 11, 9, 12, 9, 8, 10, 11, 9, 10, 8, 10, 7, 9, 10, 9, 11. Как видим, некоторые цифры попадаются в данном ряду по несколько раз. Следовательно, учитывая число повторений, данные ряд можно представить в более удобной, компактной форме:

Это и есть вариационный ряд. Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности, называются частотами, или весами, вариант. Они обозначаются строчной буквой латинского алфавита.f i и имеют индекс “i”, соответствующий номеру переменной в вариационном ряду.

Процентное представление частот полезно в тех случаях, когда приходится сравнивать вариационные ряды, сильно различающиеся по объемам. Например, при тестировании школьной готовности детей города, поселка городского типа и села были обследованы выборки детей численностью 1000, 300 и 100 человека соответственно. Различие в объемах выборок очевидно. Поэтому сравнение результатов тестирования лучше проводить, используя проценты частот.

Приведенный выше ряд (3.1) можно представить по другому. Если элементы ряда расположить в возрастающем порядке, то получится так называемый ранжированный вариационный ряд:

Подобная форма представления (3.3) более предпочтительна, чем (3.1), поскольку лучше иллюстрирует закономерность варьирования признака.

Частоты, характеризующие ранжированный вариационный ряд, можно складывать, или накапливать. Накопленные частоты получаются последовательным суммированием значений частот от первой частоты до последней.

В качестве примера вновь обратимся к ряду 3.3. Преобразуем его в ряд 3.4 в котором введем дополнительную строчку и назовем ее «кумуляты частот»:

Рассмотрим подробно как получилась последняя строчка. В начале ряда частот стоит 1. В кумулятивном ряду на втором месте стоит 2 - это сумма первой и второй частоты, т.е. 1 + 1, на третьем месте стоит 4 это сумма второй (уже накопленной частоты) и третьей частоты, т.е. 2 + 2, на четвертом 8 = 4 + 4 и т.д.


Размах (иногда эту величину называют разбросом) выборки обозначается буквой R. Это самый простой показатель, который можно получить для выборки - разность между максимальной и минимальной величинами данного конкретного вариационного ряда, т.е.

Понятно, что чем сильнее варьирует измеряемый признак, тем больше величина R, и наоборот.

Однако может случиться так, что у двух выборочных рядов и средние, и размах совпадают, однако характер варьирования этих рядов будет различный. Например, даны две выборки:

При равенстве средних и разбросов для этих двух выборочных рядов характер их варьирования различен. Для того чтобы более четко представлять характер варьирования выборок, следует обратиться к их распределениям.

Таблицы и графики распределения частот

Как правило, анализ данных начинается с изучения того, как часто встречаются те или иные значения интересующего исследователя признака (переменной) в имеющемся множестве наблюдений. Для этого строятся таблицы и графики распределения частот. Нередко они являются основой для получения ценных содержательных выводов исследования.

Если признак принимает всего лишь несколько возможных значений (до 10-15), то таблица распределения частот показывает частоту встречаемости каждого значения признака. Если указывается, сколько раз встречается каждое значение признака, то это - таблица абсолютных частот распределения, если указывается доля наблюдений, приходящихся на то или иное значение признака, то говорят об относительных частотах распределения.

Во многих случаях признак может принимать множество различных значений, например, если мы измеряем время решения тестовой задачи. В этом случае о распределении признака позволяет судить таблица сгруппированных частот, в которых частоты группируются по разрядам или интервалам значений признака.

Еще одной разновидностью таблиц распределения являются таблицы распределения накопленных частот. Они показывают, как накапливаются частоты по мере возрастания значений признака. Напротив каждого значения (интервала) указывается сумма частот встречаемости всех тех наблюдений, величина признака у которых не превышает данного значения (меньше верхней границы данного интервала). Накопленные частоты содержатся в правых столбцах табл. 3.2 и 3.3.

Для более наглядного представления строится график распределения частот или график накопленных частот - гистограмма или сглаженная кривая распределения.

Гистограмма распределения частот - это столбиковая диаграмма, каждый столбец которой опирается на конкретное значение признака или разрядный интервал (для сгруппированных частот). Высота столбика пропорциональна частоте встречаемости соответствующего значения. На рис. 3.1 изображена гистограмма распределения частот для примера из табл. 3.2.

Гистограмма накошенных частот отличается от гистограммы распределения тем, что высота каждого столбика пропорциональна частоте, накопленной к данному значению (интервалу). На рис. 3.2 изображена гистограмма накопленных частот для данных табл. 3.2.

Построение полигона распределения частот напоминает построение гистограммы. В гистограмме вершина каждого столбца, соответствующая частоте встречаемости данного значения (интервала) признака, - отрезок прямой. А для полигона отмечается точка, соответствующая середине этого отрезка. Далее все точки соединяются ломаной линией (рис. 3.3). Вместо гистограммы или полигона часто изображают сглаженную кривую распределения частот. На рис. 3.4 изображена гистограмма распределения для примера из табл. 3.3 (столбики) и сглаженная кривая того же распределения частот.

Таблицы и графики распределения частот дают важную предварительную информацию о форме распределения признака: о том, какие значения встречаются реже, а какие чаще, насколько выражена изменчивость признака. Обычно выделяют следующие типичные формы распределения. Равномерное распределение – когда все значения встречаются одинаково (или почти одинаково) часто. Симметричное распределение - когда одинаково часто встречаются крайние значения. Нормальное распределение - симметричное распределение, у которого крайние значения встречаются редко и частота постепенно повышается от крайних к серединным значениям признака. Асимметричные распределения - левосторонние (с преобладанием частот малых значений), правосторонние (с преобладанием частот больших значений).

Уже сами по себе таблицы и графики распределения признака позволяют делать некоторые содержательные выводы при сравнении групп испытуемых между собой. Сравнивая распределения, мы можем не только судить о том, какие значения встречаются чаще в той или иной группе, но и сравнивать группы по степени выраженности индивидуальных различий - изменчивости по данному признаку.

Таблицы и графики накопленных частот позволяют быстро получить дополнительную информацию о том, сколько испытуемых (или какая их доля) имеют выраженность признака не выше определенного значения.

Раздел 4. Описательные статистики
(Статистическое распределение и его числовые характеристики)

Переменная может принимать много значений. На начальном этапе обработки данных вместо того, чтобы рассматривать все значения переменной, рекомендуется проанализировать т. к. описательные статистики. Они дают общее представление о значениях или разбросе значений, которые принимает переменная.

К первичным описательным статистикам (Descriptive Statistics) обычно относят числовые характеристики распределения измеренного на выборке признака. Каждая такая характеристика отражает в одном числовом значении свойство распределения множества результатов измерения: с точки зрения их расположения на числовой оси либо с точки зрения их изменчивости. Основное назначение каждой из первичных описательных статистик - замена множества значений признака, измеренного на выборке, одним числом (например, средним значением как мерой центральной тенденции). Компактное описание группы при помощи первичных статистик позволяет интерпретировать результаты измерений, в частности, путем сравнения первичных статистик разных групп.

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Тема 9. Ряды распределения

Статистические ряды распределения – это первичная характеристика массовой статистической совокупности, упорядоченное разложение единиц изучаемой совокупности на группы по группировочному признаку. Любой статистический ряд распределения состоит из двух элементов:

1) отдельных значений варьирующего признака (вариантов );

2) величин, которые показывают, сколько раз повторяется данная варианта (частот ).

Примечание . Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями ; это численность ряда распределения выражается суммой частот .

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным . Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).

Выделяют три формы вариационного ряда :

1) ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака; ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются; другие формы вариационного ряда - групповые таблицы , составленные по характеру вариации значений изучаемого признака;

2) дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением, между которыми нет промежуточных значений (дискретные признаки - тарифный разряд, количество детей в семье, число работников на предприятии и т.д.); эти признаки могут принимать только конечное число определенных значений;

Дискретный ряд представляет собой групповую таблицу , которая состоит из двух граф: в первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака;

3) если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный ряд (с равными или неравными интервалами).

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота). Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение. Частоты ряда f могут заменяться частностями w , выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме (9.1):



(9.1)

При построении вариационного ряда с интервальными значениями, прежде всего, необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп n (9.2):

где R = x max - x min ; n = 1 + 3,322 lgN(формула Стерджесса ); N - общее число единиц совокупности.

Интервальные вариационные ряды могут быть построены и для признаков с дискретной вариацией. Нередко в статистическом исследовании указывать отдельное значение дискретного признака нецелесообразно, т.к. это, как правило, затрудняет рассмотрение вариации признака. Поэтому возможные дискретные значения признака распределяются по группам и подсчитываются соответствующие им частоты (частности). При построении интервального ряда по дискретному признаку границы смежных интервалов не повторяют друг друга: следующий интервал начинается со следующего по порядку (после верхнего значения предыдущего интервала) дискретного значения признака.

При сравнении частот ряда с неравными интервалами для характеристики их наполненности рассчитывают плотность распределения. Средняя плотность в интервале – это частное от деления частоты и частности на величину интервала. В первом случае плотность абсолютная, во втором – относительная. Средняя плотность показывает, сколько единиц или их процентов приходится на единицу измерения варианты. Частота, частность, плотность и накопленная частота – это различные функции от величины варианты.

В процессе анализа статистических данных , представленных рядами распределения, кроме знания о характере распределения (или структуре совокупности) могут вычисляться различные статистические показатели (числовые характеристики), которые в обобщенном виде отражают особенности распределения изучаемых признаков. Эти характеристики (показатели) могут быть разделены на 3 основные группы

1) характеристики центра распределения (средняя, мода, медиана);

2) характеристики степени вариации (вариационный размах, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение, коэффициент вариации);

3) характеристики формы (типа) распределения (показатели эксцесса и асимметрии, ранговые характеристики, кривые распределения).

Наиболее надежный путь выявления закономерности распределения состоит в следующем:
1) увеличить количество наблюдаемых случаев (в соответствии с законом больших чисел, в таких рядах случайные отклонения от общей закономерности у индивидуальных значений будут взаимно погашаться);

2) первоначально совокупность разбить на максимальное возможное число групп, затем, постепенно сокращая число групп, оптимизировать группировку с точки зрения выявления закономерности распределения.

При реализации такого подхода закономерность, характерная для данного распределения будет выступать все более и более ясно, а ломаная линия, изображающая полигон, будет приближаться к некоторой плавной линии и в пределе должна превратиться в кривую линию.

Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось п 1 раз, х 2 - п 2 раз, х к - п к раз и - объем выборки. Наблюдаемые значения х 1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке - вариационным рядом .

Число наблюдений варианты называют частотой, а ее отношение к объему выборки - относительной частотой .

Определение. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант и соответствующих им частот п i или относительных частот .

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

(сумма всех относительных частот равна единице ).

Пример 1 . При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72,74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

Контроль: 0,1 + 0,2 + 0,4 + 0,1 + 0,2 = 1.

Полигоном частот называют ломаную, отрезки, которой соединяют точки Для построения полигона частот на оси абсцисс откладывают варианты х 2 , а на оси ординат - соответствующие им частоты п i . Точки соединяют отрезками и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки . Для построения полигона относительных частот на оси абсцисс откладывают варианты х i , а на оси ординат соответствующие им частоты w i . Точки соединяют отрезками и получают полигон относительных частот

Пример 2. Постройте полигон частот и полигон относительных частот по данным примера 1.

Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:


2. Статистический интервальный ряд распределения. Гистограмма .

Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интерисующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.


Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

1. R(размах) = X max -X min

2. k- число групп

3. (формула Стерджеса)

4. a = x min , b = x max

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Интервалы группировки ...
Частоты ...

Аналогическую таблицу можно образовать, заменяя частоты n i относительными частотами.

Представляются в виде рядов распределения и оформляются в виде .

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

  • Атрибутивными — называют ряды распределения, построенные по качественными признакам.
  • Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .
Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:
  • Полигона
  • Гистограммы
  • Кумуляты
  • Огивы

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) — частоты или частости.

Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.

6.1. Распределение домохозяйств по размеру

Условие : Приводятся данные о распределении 25 работников одного из предприятий по тарифным разрядам:
4; 2; 4; 6; 5; 6; 4; 1; 3; 1; 2; 5; 2; 6; 3; 1; 2; 3; 4; 5; 4; 6; 2; 3; 4
Задача : Построить дискретный вариационный ряд и изобразить его графически в виде полигона распределения.
Решение :
В данном примере вариантами является тарифный разряд работника. Для определения частот необходимо рассчитать число работников, имеющих соответствующий тарифный разряд.

Полигон используется для дискретных вариационных рядов.

Для построения полигона распределения (рис 1) по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости.

Если значения признака выражены в виде интервалов, то такой ряд называется интервальным.
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты или огивы.

Статистическая таблица

Условие : Приведены данные о размерах вкладов 20 физических лиц в одном банке (тыс.руб) 60; 25; 12; 10; 68; 35; 2; 17; 51; 9; 3; 130; 24; 85; 100; 152; 6; 18; 7; 42.
Задача : Построить интервальный вариационный ряд с равными интервалами.
Решение :

  1. Исходная совокупность состоит из 20 единиц (N = 20).
  2. По формуле Стерджесса определим необходимое количество используемых групп: n=1+3,322*lg20=5
  3. Вычислим величину равного интервала: i=(152 — 2) /5 = 30 тыс.руб
  4. Расчленим исходную совокупность на 5 групп с величиной интервала в 30 тыс.руб.
  5. Результаты группировки представим в таблице:

При такой записи непрерывного признака, когда одна и та же величина встречается дважды (как верхняя граница одного интервала и нижняя граница другого интервала), то эта величина относится к той группе, где эта величина выступает в роли верхней границы.

Гистограмма

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис. 6.2. Распределение населения России по возрастным группам

Условие : Приводится распределение 30 работников фирмы по размеру месячной заработной платы

Задача : Изобразить интервальный вариационный ряд графически в виде гистограммы и кумуляты.
Решение :

  1. Неизвестная граница открытого (первого) интервала определяется по величине второго интервала: 7000 — 5000 = 2000 руб. С той же величиной находим нижнюю границу первого интервала: 5000 — 2000 = 3000 руб.
  2. Для построения гистограммы в прямоугольной системе координат по оси абсцисс откладываем отрезки, величины которых соответствуют интервалам варицонного ряда.
    Эти отрезки служат нижним основанием, а соответствующая частота (частость) — высотой образуемых прямоугольников.
  3. Построим гистограмму:

Для построения кумуляты необходимо рассчитать накопленные частоты (частости). Они определяются путем последовательного суммирования частот (частостей) предшествующих интервалов и обозначаются S. Накопленные частоты показывают, сколько единиц совокупности имеют значение признака не больше, чем рассматриваемое.

Кумулята

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости (рис. 6.3).

Рис. 6.3. Кумулята распределения домохозяйств по размеру

4. Рассчитаем накопленные частоты:
Наколенная частота первого интервала рассчитывается следующим образом: 0 + 4 = 4, для второго: 4 + 12 = 16; для третьего: 4 + 12 + 8 = 24 и т.д.

При построении кумуляты накопленная частота (частость) соответствующего интервала присваивается его верхней границе:

Огива

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат — накопленные значения доли (в процентах) по объему признака.

Равномерному распределению признака соответствует на графике диагональ квадрата (рис. 6.4). При неравномерном распределении график представляет собой вогнутую кривую в зависимости от уровня концентрации признака.

6.4. Кривая концентрации