Задания школьной олимпиады по биологии

\ Документы \ Для учителя химии и биологии

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Олимпиада по биологии для 6 класса

Материал разработала и прислала: Маслова Виктория Викторовна, учитель биологии Муниципальное образовательное учреждение Дворянская средняя общеобразовательная школа, 403843, с.Дворянское, Камышинский муниципальный район, Волгоградская область. Адрес e-mail: [email protected]

ВАРИАНТ "А"

К каждому из заданий варианта "А" даны четыре варианта ответа, из которых только один правильный. Номер этого ответа обведите кружком.

1. Какая связь существует между термином "растение" и одним из четырех терминов, приведенных ниже. Определите этот термин.

1) вакуоль 2) корень 3) фотосинтез 4) минеральное питание

2. Какие бактерии считают "санитарами планеты"?

1) гниения 2) уксуснокислые 3) молочнокислые 4) клубеньковые

3. Образование органических веществ из неорганических с использованием энергии Солнца происходит у растений в процессе

1) фотосинтеза 2) дыхания 3) испарения 4) транспорта веществ

4. К какому классу относятся цветковые растения, имеющие стержневую корневую систему и сетчатое жилкование листьев?

1) сфагновых мхов 2) хвойных 3) двудольных 4) папоротниковидных

5. Особенности строения какого органа цветковых растений играют решающую роль при их объединении в классы?

1) семени 2) плода 3) цветка 4) листа

6. Назовите внутреннюю среду клетки, в которой располагается ядро и многочисленные органоиды

1) оболочка 2) плазматическая мембрана 3) цитоплазма 4) ядро

7. Число хромосом для каждого вида организмов постоянно. Сколько хромосом у человека?

1) 54 2) 78 3) 48 4) 46

8. Группа клеток, сходных по строению, размерам и выполняемым функциям, образует:

9. Какие бывают корневые системы

1) боковые и стержневые 2) мочковатые и стержневые 3) главные и мочковатые 4) придаточные и стержневые

10. Как называется часть тела, выполняющая определенные функции

1) орган 2) фагоцитоз 3) ткань 4) вирус

>> Клеточное строение организма

§ 7. Клеточное строение организма


1. Каково строение животной клетки?
2. Какую функцию выполняют хромосомы?
3. Как происходит деление клетки?

Внешняя и внутренняя среда организма.

Внешней средой называют ту, в которой находится организм. Человек живет к газообразной среде, но временно может находиться в воде, например во время купания.

Митохондрии участвуют в биологическом окислении веществ, за счет которого освобождается энергия, необходимая для жизнедеятельности клеток. Эти нитевидные образования, едва видимые в оптический микроскоп, называются энергетическими станциями клетки.

Благодаря биологическому окислению сложные органические вещества распадаются и выделяющаяся при этом энергия используется клетками для мышечного сокращения, выработки тепла, синтеза веществ, необходимых для формирования структур клетки. В клетках часто встречаются микроскопические пузырьки, лизосомы, в которых распадаются сложные органические вещества, подлежащие переработке или уничтожению.

Связь между объемом и поверхностью клетки.

Размер клеток ограничен, поскольку с увеличением объема и массы клетки относительная ее поверхность уменьшается, и клетка уже не может получить нужного количества питательных веществ и выделить полностью продукты распада. Поэтому, достигнув определенного размера, она перестает увеличиваться в объеме.

Деление клетки - сложный процесс (рис. 12). Он начинается с того, что около каждой молекулы ДНК синтезируется ее двойник - такая же молекула. В хромосоме оказывается рядом пара одинаковых молекул ДНК, которые потом станут самостоятельными хромосомами дочерних клеток.

Перед делением ядро разбухает и увеличивается в размерах. Хромосомы скручиваются в спираль и становятся различимыми в оптический микроскоп. Ядерная оболочка исчезает. Органоиды клеточного центра расходятся к противоположным полюсам клетки, а между ними формируется «веретено» деления.


В следующей фазе деления хромосомы выстраиваются по экватору клетки. Парные молекулы ДНК каждой хромосомы связываются с соответствующими центриолями: одна молекула с одной центриолью, а ее двойник - с другой. Вскоре молекулы ДНК начинают расходиться, каждая к своему полюсу. Образуются два новых набора, состоящие из одинаковых хромосом и одинаковых генов. Хромосомы дочерних клеток образуют клубки. Вокруг них синтезируется ядерная оболочка. Скрученные ранее в спираль хромосомы полностью раскручиваются и перестают быть видимыми. После формирования ядра происходит деление органоидов, цитоплазма «перешнуровывается» на две половины, и образуются две полностью обособленные дочерние клетки.

Жизненные процессы клетки.

Во всех без исключения клетках идут процессы обмена веществ. Из поступающих в клетку питательных веществ образуются сложные вещества (характерные для каждого типа клеток), формируются клеточные структуры. Параллельно с образованием новых веществ идут процессы биологического окисления органических веществ - белков, жиров, углеводов. При этом происходит выделение энергии, необходимой для жизнедеятельности клетки. Продукты распада удаляются за ее пределы.

Ферменты.

Синтез и распад веществ происходят благодаря действию ферментов. Это биологические катализаторы белковой природы, ускоряющие во много раз течение химических процессов. Каждый фермент действует только на определенные соединения. Они называются субстратом данного фермента.

Ферменты вырабатываются и в растительных и в животных клетках. Иногда их действия сходны. Так, фермент каталаза, находящийся в клетках стенки ротовой полости, мышцах , печени, способен расщеплять пероксид водорода. Это вредное соединение, образующееся в организме.

Проделаем опыт.

Нальем в химический стакан пероксид водо¬рода и опустим в него кусочки мелко нарезанного клубня картофеля. Жидкость вспенивается за счет образования пузырьков кислорода: 2Н202 катализатор 2Н2О + О2; ядовитый пероксид водорода разлагается на безвредные кислород и воду.

Ферменты действуют как в клетках, так и вне клеток. При кипячении белки свертываются, а ферменты теряют активность. Выводят их из строя и некоторые химические вещества, например соли тяжелых металлов. (Если сварить картофель, реакции разложения пероксида водорода не будет.)

Рост и развитие клетки.

В процессе жизнедеятельности происходят рост и развитие клеток. Ростом называют увеличение размеров и массы клетки, а развитием клетки - ее возрастные изменения, в том числе и достижение ею способности полностью выполнять свои функции. Например, для того чтобы костная клетка могла создавать твердое и прочное костное вещество, она должна созреть.

Покой и возбуждение клеток.

Клетки могут находиться в состоянии покоя или в состоянии возбуждения.
При возбуждении клетка включается в работу и выполняет свои функции. Обычно переход к возбуждению связан с раздражением. Так, в ответ на раздражение нервная клетка посылает нервные импульсы; мышечная клетка сокращается, а железистая - выделяет секрет.

Следовательно, раздражение - это процесс воздействия на клетку. Оно может быть механическим, электрическим, тепловым, химическим и т. д. В ответ на раздражение клетка из состояния покоя переходит в состояние возбуждения, то есть активной работы.

Способность клетки отвечать на раздражение специфической реакцией называется возбудимостью. Наибольшей возбудимостью обладают мышечные и нервные клетки.

Клеточная мембрана, ядро, цитоплазма, хромосомы, гены, ДНК, РНК, ядрышко, органоиды, эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, центриоли, обмен веществ, рост, развитие, ферменты.


1. В какой среде находятся клетки организма человека?
2. Какое значение имеет клеточная мембрана?
3. Каковы функции ядра и ядрышка?
4. Сколько хромосом имеют половые клетки - сперматозоид и яйцеклетка?
5. Назовите органоиды клетки.


Колосов Д. В. Маш Р. Д., Беляев И. Н. Биология 8 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Структура клетки остается общей для многих организмов. Это клеточная мембрана, цитоплазма с транспортной сетью и органеллами. В эукариотических клетках имеется также ядро, а в клетках грибов, бактерий и растений дополнительно присутствует клеточная стенка. Она отделяет клетку от внешней среды, тогда как внутренняя, где протекают биосинтетические и метаболические процессы, защищена от неблагоприятных условий. Тогда как называется внутренняя среда клетки?

Цитоплазма и гиалоплазма

Наиболее очевидным вариантом ответа является цитоплазма. Она представляет собой коллоидную субстанцию, в толще которой расположены включения и обязательные органеллы. Однако ответ следует дополнить и термином "гиалоплазма". Так называется прозрачная среда с включениями и некоторыми органеллами. Интересно, что эта трактовка не позволяет провести четкую границу между терминами цитоплазмы и гиалоплазмы, потому как они характеризуют аналогичные понятия.

Состав внутренней среды клетки

В действительности так оно и есть, а гиалоплазмой часто называют саму цитоплазму. Она состоит из цитозоля, органелл и непостоянных включений. Термином "цитозоль" называют неоднородную жидкую часть цитоплазмы (или гиалоплазмы), которая состоит из воды, белков и неорганических соединений. Это вязкая коллоидная среда, которая обеспечивает тургор клетки и поддерживает синтетические, транспортные и метаболические процессы. Это та окружающая среда, в толще которой взвешены включения и органеллы. Она должна иметь постоянный состав и физико-химические характеристики, если это касается обычных тканей.

Если в качестве примера брать возбудимые ткани (мышечную или нервную), то в их клетках наблюдается циклическая смена заряда и мембранного потенциала, концентрации ионов. Практически все только что синтезированные белки попадают в цитозоль, если им не требуется постсинтетическая модификация. Если после синтеза им нужна сборка белковых субъединиц или к ним нужно присоединить липидный или углеводный участок, то они будут транспортированы с шероховатого эндоплазматического ретикулюма в комплекс Гольджи. Позднее они подпадут в цитозоль или на клеточную мембрану, где будут выполнять свою функцию.

Связь внутренней среды многоклеточного организма

Цитоплазма, гиалоплазма и цитозоль — все это различные названия внутренней среды клетки. В обеспечении процессов ее жизнедеятельности они играют важнейшую роль, так как являются тем местом, где происходят синтетические, метаболические и транспортные процессы. При этом многоклеточных организмов хоть и ограничена, но является частью внутренней среды многоклеточного организма. Она имеет сообщение с межклеточной жидкостью и кровью — транспортной системой организма.

Из крови вещества проникают в межклеточное пространство (интерстиций), откуда транзитом через ионные каналы или через цитоплазматическую мембрану питательные вещества и связанный кислород поступают в цитоплазму. Так называется внутренняя среда клетки, единая система, которая выполняет ее важнейшие функции.

В узком смысле цитоплазму (или гиалоплазму) можно назвать посредником между ядром клетки и интерстицием. Последний выступает в аналогичной роли для цитоплазмы и крови. Потому цитоплазма (или гиалоплазма) — это название внутренней среды клетки. Она располагается между ядерным матриксом и клеточной мембраной. При этом именно цитоплазма занимает наибольший объем клетки и на 80-85 % состоит из воды.

Ответы на экзаменационные и тестовые вопросы

Ввиду неоднозначности трактовок, описанных выше, можно ввести в заблуждение читателя, которому такой вопрос попадется на экзаменационном или на тестовом вопросе. Как называется внутренняя среда клетки? Ответ следует давать в зависимости от обстоятельств. Например, в случае устного экзамена следует сказать, что внутренней средой является цитоплазма, которая также называется гиалоплазмой. Они же, в свою очередь, состоят из цитозоля, непостоянных включений и обязательных органелл. Сам цитозоль — это жидкая часть цитоплазмы, по большей части состоящая из воды, неорганических веществ и органических молекул. Цитозоль присутствует в виде как истинного, так и коллоидного раствора, а потому остается неоднородным по своей структуре.

Вопросы компьютерного тестирования

Если вопрос задается на автоматизированном компьютерном тестировании с указанными вариантами ответов, то нужно внимательно перечитать формулировку вопроса. Нужно понять, какого ответа хотел автор вопроса, и какой вариант подойдет лучше. Чаще всего в одноответных тестах варианты «гиалоплазма» и «цитоплазма» в разных вариантах указаны не будут. Если подобное случится, то составители тестов намеренно закладывали туда ошибку, так как понятия гиалоплазмы и цитоплазы одинаковые. И в вопросе о том, как называется внутренняя среда клетки, варианты могут быть различны, но суть одна. Это цитоплазма, гиалоплазма и цитозоль. Самым очевидным вариантом ответа является цитоплазма.

Внутренняя среда клетки

Внутри клетки находится цитоплазма. Она состоит из жидкой части – гиалоплазмы (матрикса), органелл и цитоплазматических включений.

Гиалоплазма

Гиалоплазма – основное вещество цитоплазмы, заполняет все пространство между плазматической мембраной, оболочкой ядра и другими внутриклеточными структурами. Гиалоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобразном, которые взаимно переходят одно в другое. В процессе этих переходов осуществляется определенная работа, затрачивается энергия. Гиалоплазма лишена какой-либо определенной организации. Химический состав гиалоплазмы: вода (90 %), минеральные ионы, белки (ферменты гликолиза, обмена сахаров, азотистых оснований, белков и липидов). Некоторые белки цитоплазмы образуют субъединицы, дающие начало таким органеллам, как центриоли, микрофиламенты.

Функции гиалоплазмы:

1) образование истинной внутренней среды клетки, которая объединяет все органеллы и обеспечивает их взаимодействие;

2) поддержание определенной структуры и формы клетки, создание опоры для внутреннего расположения органелл;

3) обеспечение внутриклеточного перемещения веществ и структур;

4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.

Включения

Это относительно непостоянные компоненты цитоплазмы. Среди них выделяют:

1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне (при клеточном голоде), – капли жира, гранулы крахмала или гликогена;

2) продукты, которые подлежат выделению из клетки, например, гранулы зрелого секрета в секреторных клетках (молоко в лактоцитах молочных желез);

3) балластные вещества некоторых клеток, которые не выполняют какой-либо конкретной функции (некоторые пигменты, например, липофусцин стареющих клеток).

Метаболизм

Материальная сущность жизни проявляется, прежде всего, в непрерывном обмене веществ и энергии, который происходит между живой системой (клеткой, организмом, биоценозом) и окружающей его внешней средой. В этом смысле биологические системы являются открытыми .

Разные организмы потребляют разные виды энергии , в связи с чем их делят на автотрофные и гетеротрофные.

Автотрофные организмы (самопитающиеся) способны поглощать энергию неживой природы. Прежде всего, это зеленые растения, а также бурые и красные водоросли, использующие солнечный свет для процесса фотосинтеза – образования органического вещества глюкозы из неорганических воды и углекислого газа. К автотрофам относятся также сине-зеленые водоросли (цианеи) и некоторые бактерии, способные к реакциям хемосинтеза – синтеза органических веществ за счет энергии простых химических реакций. При этом первичная энергия (солнечная или химическая) преобразуется в энергию химических связей сложных органических молекул , так что автотрофы как бы сами создают себе пищу.

Гетеротрофные организмы (питающиеся за счет других) – человек, все животные, грибы, а также многие бактерии, – получают пищу в виде готовых органических веществ, произведенных автотрофами, в основном растениями. В составе этой пищи они получают и энергию, заключенную в химических связях.

Если органическое вещество пищи расщепить на более простые вещества, освобождается энергия. По существу гетеротрофы получают ту же солнечную энергию, но преобразованную зелеными растениями в химическую. Отсюда ясна огромная роль растительных организмов как посредника в энергетическом обеспечении животных и человека . Избавиться от этой зависимости, получать какую-либо энергию прямо из неживой природы человечество еще не научилось. И хотя академик В. И. Вернадский выдвигал такую научную задачу, дальше фантастических произведений дело не продвинулось и вряд ли продвинется в обозримом будущем. Поэтому для биологов всего мира одной из приоритетных задач остается понять во всех деталях механизм фотосинтеза, чтобы максимально интенсифицировать его в растениях и по возможности воспроизвести в искусственных условиях.

Структура АТФ и её изменение в ходе метаболизма

Реакции энергетического обмена . Независимо от исходного источника энергии все организмы, как автотрофы, так и гетеротрофы, сначала переводят энергию в удобное для дальнейшего использования состояние. Это так называемые макроэргические (богатые энергией) связи в молекулах аденозинтрифосфорной кислоты – АТФ . Образуются молекулы АТФ из аденозинди фосфорной (АДФ) или аденозинмоно фосфорной (АМФ) кислоты и свободных молекул фосфорной кислоты, но при непременном поглощении внешней энергии – солнечной или химической (эндотермическая реакция). Количество энергии, запасенное в макроэргической связи, на порядок больше, чем в обычных связях, например, внутри молекулы глюкозы, поэтому в составе АТФ энергию удобно хранить и транспортировать в пределах клетки.

В местах потребления этой энергии АТФ распадается на АДФ и фосфат (при крайней необходимости даже на АМФ и два фосфата), а освобожденная энергия расходуется на ту или иную работу – синтез глюкозы в хлоропластах растительных клеток, синтез белков и других макромолекул, транспорт веществ в клетку и из клетки, движение и др. АДФ (АМФ) и фосфат могут снова соединиться, захватив очередную порцию внешней энергии, а потом разрушиться и отдать энергию в работу. Циклические преобразования АТФ многократно повторяются.

Таким образом, АТФ выступает в качестве универсального переносчика энергии внутри клетки, своеобразной разменной монетой в энергетических платежах за внутриклеточные процессы .

Пути анаболизма и катаболизма в клетке

Проблема клеточной энергетики сводится к пониманию первичных источников энергии и механизмов ее перевода в АТФ . В общем виде ситуация такова: у фотосинтетических аутотрофных организмов синтез АТФ из АДФ и фосфата генерируется солнечной энергией, у гетеротрофов – энергией от окисления пищевых продуктов.

Таким образом, растениям для синтеза АТФ нужен свет , животным и человеку нужна органическая пища .

Свет является первичным источником энергии , он используется в реакциях фотосинтеза у растений . По конечной сути реакция фотосинтеза довольно проста:

6СО 2 + 6H 2 O + энергия света → С 6 Н 12 О 6 + 6О 2

С помощью энергии света из углекислого газа и воды синтезируется 6-углеродное органическое вещество - глюкоза (моносахарид), и в качестве «лишнего» продукта образуется кислород, который уходит в атмосферу. На самом деле эта реакция более сложная, она состоит из двух стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего пигмента хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе.

Глюкоза вместе с минеральными веществами, поступающими в растение из почвы (соли азота, серы, фосфора, железа, магния, кальция, калия, натрия и др.), становится основой для более сложных синтезов – образуются полисахариды, липиды, белки, нуклеиновые кислоты, из которых строятся рабочие структуры клеток. Но и эти синтезы, как и синтез глюкозы, требуют энергетических затрат. Прямое использование света здесь невозможно (эволюция не создала таких энергетических переходов), поэтому некоторая часть глюкозы тратится как энергетический субстрат, то есть глюкоза становится вторичным источником энергии . Глюкоза расщепляется и отдает энергию – сначала на синтез АТФ, а после расщепления АТФ – на биосинтезы макромолекул.

Значительная часть АТФ, как уже сказано выше, расходуется на другую работу – транспорт веществ, движение клетки и др. Наиболее эффективно глюкоза расщепляется с участием кислорода:

C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O + энергия

С химической точки зрения это полное окисление – «горение» глюкозы. В живой клетке

«горение» происходит замедленно, поэтапно, так что энергия выделяется малыми порциями, и большая ее часть (около 55 %) используется на синтез АТФ, остальная рассеивается в виде тепла. Полное окисление одной молекулы глюкозы обеспечивает синтез 38 молекул АТФ . Поскольку кислород для окисления мы вдыхаем с атмосферным воздухом, то и на химическом уровне окисление глюкозы кислородом называют дыханием . Главная черта растительной автотрофной клетки – способность к фотосинтезу, который обеспечивает первый этап построения органического вещества, в форме глюкозы. Но и дыхание в полной мере присуще растениям, так как именно этот процесс извлекает энергию из глюкозы (а также из жиров и лишних белков), переводит ее временно в АТФ и далее в сложные макромолекулы. Эта же схема, но с изъятием реакции фотосинтеза, соответствует и гетеротрофному метаболизму животных клеток . В этом случае глюкоза (а также другие углеводы, жиры, трофические белки и др.) поступают в клетку извне в готовом виде. Часть этих материалов идет на дыхание (в топку, для извлечения энергии через синтез АТФ), а часть, после некоторой переделки, на синтез новых макромолекул как строительный материал. Таким образом, пища у гетеротрофов (то есть и у нас с вами) имеет двойное назначение – энергетическое и пластическое (строительное) .

Между пластическим обменом (анаболизмом) и энергетическим (катаболизмом) существует неразрывноеединство. Энергия поглощается из внешней среды, преобразуется в АТФ, прежде всего, для осуществления строительных процессов, для построения живой материи. А построение живой материи, то есть синтез макромолекул из простых неорганических веществ, возможен только с поглощением внешней энергии.