Особенности функций иммунной системы. Иммунитет и его механизмы

Иммунитет. Иммунологическая память.

Иммунитет это эволюционно обусловленная совокупность реакций взаимодействия между системой иммунитета и биологически активными агентами (антигенами). Эти реакции направлены на сохранение фенотипического постоянства внутренней среды (гомеостаза) организма и результатом их могут быть различные феномены и реакции иммунитета. Одни из них являются полезными, защитными, другие обусловливают патологию. К первым относятся:

§ Противоинфекционный иммунитет – приобретенная специфическая невосприимчивость организма к конкретным инфекционным агентам возбудителям заболеваний (микробам, вирусам).

§ Толерантность – терпимость, неотвечаемость системы иммунитета на эндогенные или экзогенные антигены.

Другие реакции иммунитета, патологического, «стрессового уровня» приводят к развитию патологии:

§ гиперчувствительность – повышенная иммунная («иммунитетная») реакция на антигены-аллергены служит причиной двух видов заболеваний: аллергических – на экзогенные аллергены (аллергия) ; аутоаллергических (аутоиммунных ) – на эндогенные, собственные биомолекулы (аутоаллергия); при аутоиммунных болезнях "свои" молекулы узнаются системой иммунитета как "чужие" и на них развиваются реакции; система иммунитета в норме не отвечает на "свое" и отторгает "чужое".

§ анергия , т.е. отсутствие реакции на антигены (вариант толерантности), обусловлена недостаточностью различных видов иммунитета.

Основой реализации всех реакций иммунитета является иммунологическая память . Суть ее в том, что клетки системы иммунитета "помнят" о тех чужеродных веществах, с которыми они встречались и на которые реагировали. Иммунологическая память лежит в основе феноменов противоинфекционного иммунитета, толерантности и гиперчувствительности.

Система иммунитета (СИ) – это совокупность молекул, клеток, тканей и органов, осуществляющих иммунные реакции. Она включает несколько самостоятельных подсистем, которые реагируют как единое целое:

1. Лимфоидная система включает Т- и В-лимфоциты, которые образуют специфические факторы иммунитета (антитела и Т-клеточные рецепторы к антигену).

2. Система естественные киллерных клеток (ЕКК) .

3. Система антигенпредставляющих клеток (АПК) включает дендритные клетки, клетки Лангерганса, интердигитирующие клетки и др.

4. Система гранулоцитов объединяет нейтрофильные лейкоциты, базофильные лейкоциты/тучные клетки, эозинофильные лейкоциты.

5. Система мононуклеарных фагоцитов (моноциты, макрофаги тканей и органов).

6. Гуморальные факторы неспецифического естественного иммунитета: лизоцим, С-реактивный белок (СРБ), интерфероны, фибронектин, β-лизины, лектины и др.

7. Система комплемента .

8. Система тромбоцитов

К центральным органам системы иммунитета относятся красный костный мозг и тимус. К периферическим – циркулирующие лимфоциты крови, лимфатические узлы, селезенка, миндалины, лимфоидная ткань кишечника (пейеровы бляшки, солитарные фолликулы, лимфоидные образования аппендикса и др.), бронхоассоциированная лимфоидная ткань (в области бифуркации трахеи), лимфоидные образования кожи, печени.

На молекулярном уровне центральными понятиями иммунологии являются антигены, антитела, рецепторы и цитокины.

Антигены – любые вещества, чаще белки или гликопротеиды, которые, попадая в организм, вызывают образование специфических антител и/или Т-клеточных рецепторов. Антитела – белковые молекулы, иммуноглобулины, которые образуются В-лимфоцитами и плазмоцитами и специфично взаимодействуют с антигенами. Рецепторы – макромолекулы на клетках, специфически связывающие различные биологически активные вещества (лиганды ). Цитокины – медиаторы межклеточных взаимодействий, обеспечивающие взаимосвязь клеток как внутри системы иммунитета, так и их многочисленные связи с другими системами макроорганизма.

Виды иммунитета

Существуют механизмы «неиммунитетной», естественной неспецифической резистентности организма . К ним относятся защита организма от внешних агентов: наружными покровами (кожа, слизистые оболочки), механическими (слущивание эпителия, движение ресничек и секретов, слизистых оболочек, чихание, кашель), физическими механизмами (барьеры), химическими веществами (бактерицидное действие соляной, молочной, жирных кислот, ряда ферментов, особенно лизоцима – мурамидазы).

Видовая невосприимчивость (конституциональный, наследственный иммунитет) – это вариант неспецифической резистентности организма, генетически обусловленный особенностями обмена веществ данного вида. Он в основном связан с отсутствием условий, необходимых для размножения возбудителя. Например, животные не болеют некоторыми болезнями человека (сифилис, гонорея, дизентерия), и, наоборот, люди невосприимчивы к возбудителю чумы собак. Данный вариант резистентности не является истинным иммунитетом, так как он не осуществляется системой иммунитета.

От неспецифической, "неиммунитетной" резистентности, следует отличать неспецифические естественные факторы иммунитета или естественный врожденный иммунитет (innate natural immunity ). Они включают клетки и гуморальные факторы.

Среди гуморальных факторов важными являются естественные, предсуществующие антитела. Такие антитела исходно имеются в организме в небольшом количестве против многих бактерий и вирусов.

Неспецифическими гуморальными факторами иммунитета служат система комплемента, С-реактивный белок, фермент лизоцим, интерфероны, цитокины и др. Клеточные факторы – это фагоциты (моноциты, макрофаги, полиморфноядерные лейкоциты), которые проявляют свою активность во всех тканях, полостях, могут выходить на поверхность слизистых оболочек и там выполнять защитную функцию.

Приобретенный (адаптивный) иммунитет возникает в течение жизни в результате стимуляции клеток СИ антигенами микроорганизмов или получения готовых иммунных факторов. Поэтому он бывает естественным и искусственным , каждый из которых может быть активным и пассивным .

Естественный активный иммунитет появляется в результате контакта с возбудителем (после перенесенного заболевания или после скрытого контакта без проявления симптомов болезни).

Естественный пассивный иммунитет возникает в результате передачи от матери к плоду через плаценту (трансплацентарный) или с молоком готовых защитных факторов – лимфоцитов, антител, цитокинов и т.п.

Искусственный активный иммунитет индуцируется после введения в организм вакцин и анатоксинов, которые содержат микроорганизмы или их субстанции – антигены.

Искусственный пассивный иммунитет создается после введения в организм готовых антител или иммунных клеток. В частности, такие антитела содержатся в сыворотке крови иммунизированных доноров или животных.

4.CD-антигены-Молекулы дифференцировки клеток системы иммунитета

В процессе дифференцировки на мембранах клеток системы иммунитета появляются различные макромолекулы, соответствующие определенной стадии развития клеточных популяций. Они получили название CD-антигенов В настоящее время таких молекул известно более 250. Все они выполняют функции рецепторов, после взаимодействия с которыми внутрь клетки поступает сигнал и происходит ее активация, супрессия или апоптоз (программируемая клеточную гибель ).

Все CD-молекулы являются мембраннымифенотипическими маркерами соответствующих клеток. CD-антигены выявляют с помощью меченых моноклональных антител иммунофлюоресцентной микроскопией или проточной цитометрией .

Цитокины и интерлейкины

Дифференцировка и взаимодействие клеток системы иммунитета между собой, а также с клетками других систем организма, осуществляется с помощью регуляторных молекул – цитокинов .

Цитокины это секретируемые активированными клетками пептидные медиаторы, осуществляющие регуляцию взаимодействий, активацию всех звеньев самой СИ и влияющие на различные органы и ткани.

Общие свойства цитокинов

1. Являются гликопротеинами с молекулярной массой 15-25 кД.

2. Действуют ауто - и паракринно (т.е. на саму клетку и на ее ближайшее окружение). Это короткодистантные молекулы

3. Действуют в минимальных (пико- и фемтомолярных) концентрациях.

4. Цитокины имеют соответствующие им специфические рецепторы на поверхности клеток

5. Механизм действия цитокинов заключается в передаче сигнала после взаимодействия с рецептором с мембраны клетки на ее генетический аппарат. При этом изменяется экспрессия клеточных белков с изменением функции клетки (например, выделяются другие цитокины).

Классификация цитокинов

Цитокины разделяются на несколько основных групп.

1. Интерлейкины (ИЛ)

2. Интерфероны

3. Группа факторов некроза опухоли (ФНО)

4. Группа колониестимулирующих факторов (например, гранулоцитарно-макрофагальный колониестимулирующий фактор ГМ-КСФ )

5. Группа факторов роста (эндотелиальный фактор роста, фактор роста нервов и т.д.)

6. Хемокины

Интерлейкины

Цитокины, выделяемые преимущественно клетками системы иммунитета , получили название интерлейкинов (ИЛ ) – факторов межлейкоцитарного взаимодействия .

Они нумеруются по порядку (ИЛ-1 – ИЛ-31). Выделяются лейкоцитами при стимуляции продуктами микробов и другими антигенами. Ниже приводятся основные интерлейкины, которые играют важнейшую роль в системе иммунитета как в норме, так и при развитии патологических состояний.

Фагоцитоз.

Процесс фагоцитоза происходит в несколько стадий.

Стадия хемотаксиса представляет собой целенаправленное движение макрофагов к объекту фагоцитоза (например, микробная клетка), который выделяет хемотаксические факторы (бактериальные компоненты, анафилатоксины, лимфокины и т.д.). Компоненты бактериальных клеток, продукты активации комплемента, например С5а, и локально выделяемые цитокины и хемокины привлекают фагоцитарные клетки в очаг инфекции и воспаления.

Стадия адгезии реализуется 2 механизмами: иммунным и неиммунным . Неиммунный фагоцитоз осуществляется за счет адсорбции антигена на поверхности макрофага при помощи различных молекул (например, лектинов). В иммунном фагоцитозе участвуют Fc-рецепторы макрофагов к иммуноглобулинам и C3b-компоненту комплемента. В одних случаях макрофаг несет на своей поверхности антитела, за счет которых прикрепляется к клетке-мишени. В других – с помощью Fс-рецептора он сорбирует уже образовавшийся иммунный комплекс. Антитела и факторы комплемента, усиливающие фагоцитоз, называют опсонинами .

Стадия эндоцитоза (поглощения ).

При этом происходит инвагинация мембраны фагоцита и обволакивание объекта фагоцитоза псевдоподиями с образованием фагосомы . В дальнейшем фагосома сливается с лизосомами и образуется фаголизосома .

Стадия переваривания .

В эту стадию происходит активация многочисленных ферментов, разрушающих объект фагоцитоза.

Фагоцитарные клетки обладают разнообразными механизмами уничтожения микробов.

Главный из них – продукция активных форм кислорода (АФК) через активацию гексозомонофосфатного шунта.

При этом восстанавливается молекулярный кислород с образованием супероксидного анион-радикала ("O2), из которого образуются потенциально токсичные гидроксильные радикалы (-ОН), синглетный молекулярный кислород и H 2 O 2 . В нейтрофилах под действием миелопероксидазы (и каталазы, содержащейся в пероксисомах, из перекисей в присутствии галоидов образуются дополнительные токсичные оксиданты, например гипоиодит и гипохлорит (производные НOI и HClO).

Дополнительный бактерицидный механизм основан на образовании токсичного для бактерий и опухолевых клеток оксида азота NO.

Кроме того, в фагоцитах имеются катионные белки , обладающие антимикробным действием. Важную роль играют дефензины – богатые остатками цистеина и аргинина катионные пептиды. Они вызывают образование ионных каналов в мембране микробной клетки.

Другие антимикробные механизмы : после слияния лизосом содержимое фаголизосомы временно подщелачивается, после чего рН ее содержимого падает, т. е. происходит подкисление, необходимое для действия лизосомных ферментов. Hекоторые грамположительные бактерии чувствительны к действию фермента лизоцима.

Различают завершенный и незавершенный фагоцитоз. При завершенном фагоцитозе происходит полное переваривание и бактериальная клетка погибает. При незавершенном фагоцитозе микробные клетки остаются жизнеспособными. Это обеспечивается различными механизмами. Так, микобактерии туберкулеза и токсоплазмы препятствуют слиянию фагосом с лизосомами; гонококки, стафилококки и стрептококки могут быть устойчивыми к действию лизосомальных ферментов, риккетсии и хламидии могут долго персистировать в цитоплазме вне фаголизосомы.

Последняя стадия фагоцитоза – удаление непереваренных фрагментов бактерий и других объектов фагоцитоза.

13.Классы иммунноглобулинов

Иммуноглобулины класса G составляютосновную массу иммуноглобулинов сыворотки крови (75-85%) – 10 г/л (8-12 г/л). Они неоднородны по строению Fс-фрагмента и различают их четыре субкласса: G1, G2, G3, G4.

Снижение уровня IgG в крови обозначается как гипогаммаглобулинемия IgG, увеличение – гипергаммаглобулинемия IgG.

Основную массу антител против бактерий, их токсинов и вирусов составляют IgG.

Иммуноглобулины класса М (м.м. 950 кДа) содержатся в сыворотке крови в концентрации от 0.8 до 1.5 г/л, в среднем – 1 г/л. В крови они находятся в виде пентамеров. Антитела IgM синтезируются в организме при первичном иммунном ответе, низкоаффинны, но высокоавидны из-за большого числа активных центров.

Иммуноглобулины класса А (от 1,5 до 3 г/л) IgA в крови присутствуют в виде мономеров, а в секретах в форме димеров и тримеров. Секреторные IgA (sIgA), будучи антителами, формируют местный иммунитет, препятствуют адгезии микроорганизмов к эпителию слизистых оболочек, опсонируют микробные клетки, усиливают фагоцитоз.

Иммуноглобулины класса D содержатся в сыворотке крови в концентрации 0,03-0,04 г/л. Они служат рецепторами созревающих В-лимфоцитов.

Иммуноглобулины класса Е присутствуют в сыворотке крови в концентрации около 0,00005 г/л или от 0 до 100 МЕ/мл (1 МЕ ~ 2,4 нг). При аллергии их содержание в крови увеличивается и многие из них специфичны к аллергену, т.е. являются антителами.

Иммуноглобулины

Иммуноглобулины – это большое семейство белков, которые синтезируются В-лимфоцитами и плазматическими клетками. Иммуноглобулины находятся в крови и при электрофорезе сыворотки крови они образуют фракцию g-глобулинов. Часть особых иммуноглобулинов – секреторных – присутствует во всех секретах, продуцируемых слизистыми оболочками (слезная жидкость, слизь носа, бронхов, кишечника, половых органов). В структуре иммуноглобулиновой молекулы различают 2 тяжелые (H – heavy) и 2 легкие (L – light) полипептидные цепи, соединенные между собою дисульфидными связями.

В цепях молекулы иммуноглобулинов различают константные и вариабельныеучастки .

Отдельные замкнутые в виде глобул части цепей иммуноглобулина получили название доменов . Гипервариабельные участки , где часты замены аминокислот, относятся к регионам, определяющим комплементарность иммуноглобулиновых молекул. Эти регионы локализованы в доменах тяжелой (VH) и легкой (VL) цепей. Они формируют активный центр молекулы иммуноглобулина (антитела).

Между СН1 и СН2 доменами тяжелой цепи локализуется подвижный – "шарнирный" участок молекулы иммуноглобулина, чувствительный к протеолитическим ферментам (папаину, пепсину, трипсину). Под действием папаина молекула иммуноглобулина расщепляется на 2 Fab-фрагмента (fragment antigen binding – фрагмент, связывающий антиген) и Fc-фрагмент (fragment crystallizable – фрагмент кристаллизующийся).

Когда молекула Ig связывает антиген, CН2 домен Fc-фрагмента иммуноглобулина активирует комплемент по классическому пути, а СH3 домен может связываться с Fc-рецепторами, имеющимися на лейкоцитах и других клетках.

Т-лимфоциты

После поступления в тимус (вилочковую железу) происходит антигеннезависимая дифференцировка Т-клеток под влиянием гормонов тимуса (a- и b-тимозины, тимулин, тимопоэтин). Здесь Т-лимфоциты дифференцируются в иммунокомпетентные клетки и приобретают способность к распознаванию антигена.

Основные молекулы-маркеры, присутствующие на поверхности Т-лимфоцитов: CD2 (один эпитоп-рецептор к эритроцитам барана), СD3, СD4 (у Т-хелперов), СD8 (у Т-цитотоксических (Тц)).

В норме у человека Т-лимфоциты составляют 60% (50-75%) всех лимфоцитов крови.

Т-лимфоциты неоднородны по функциям. Различают следующие основные их субпопуляции: Т 0 (нулевые, тимические, «наивные», незрелые), Т-хелперы, Т-супрессоры и Т-клетки памяти (см. рис. 1.1).

Т-хелперы (Тх) стимулируют пролиферацию и дифференцировку Т- и В-лимфоцитов, выделяя интерлейкины. На поверхности Т-хелперов имеются те же маркеры, что и на остальных Т-лимфоцитах (СD2, СD3), а также свойственная им СD4-молекула адгезии, которая участвует как вспомогательная при взаимодействии с антигеном Т-клеточного рецептора (см. ниже), служит рецептором к ВИЧ-вирусу и к молекулам главного комплекса гистосовместимости II класса (МНС-II) других клеток. В норме у человека Тx составляют 34-45% лимфоцитов крови. Среди них различают Тx первого типа (Тx1) , выделяющие ИЛ-2, g-интерферон и другие, и в итоге обеспечивающие реакции Т-клеточного иммунитета; Тx второго типа (Тx2), секретирующие ИЛ-4, ИЛ-5, ИЛ-10, ИЛ-13 и стимулирующие синтез антител.

Тх 3-регуляторная субпопуляция (фенотип CD4 + CD25 +) при активации синтезирует ИЛ-10 и TGFb (трансформирующий фактор роста b). Синтез этих цитокинов и продукта гена Foxр4 + – белка скурфина ассоциирован с супрессией иммунного ответа.

Т-цитотоксическими называют те Т-лимфоциты (18-22% в крови), которые несут антиген СD8 и рецептор к IgG (Fcg). Макромолекула CD8 служит рецептором для антигенов главного комплекса гистосовместимости I класса (МНС-I). После активации антигеном Т-супрессоры/цитотоксические клетки – Т-киллеры связываются с ним на поверхности клеток и, выделяя цитотоксин (белок перфорин), разрушают их. При этом Т-киллер остается жизнеспособным и может разрушать следующую клетку.

Т-клеточный рецептор

На поверхности Т-лимфоцитов имеется около 3 х 10 4 прочно связанных с мембранами Т-клеточных рецепторов (ТКР) к антигену, чем-то напоминающих антитела. Т-клеточный рецептор является гетеродимером и состоит из альфа- и бета- (молекулярная масса 40-50 кDа) и, реже, из g/d-цепей (1-5%-клеток в крови).

У Тх и Тц ТКР одинаковы по строению. Однако Т-хелперы взаимодействуют с антигеном, ассоциированным с HLA-молекулами II класса, а Т-цитотоксические распознают антиген в комплексе с HLA-молекулами I класса. Причем белковый антиген должен быть переварен антигенпредставляющими клетками и представлен в виде пептида длиной 8-11 аминокислот для Т-цитотоксических и 12-25 для Т-хелперов. Такое различие в связывании Тх и Тс пептидов обусловлено участием во взаимодействии молекул – CD4 у Тх и CD8 у Тц.

8.Антигены (АГ)

это любые простые или сложные вещества, которые при попадании внутрь организма тем или иным путем, вызывают иммунную реакцию, и способны специфично взаимодействовать с продуктами этой реакции: антителами и иммунными Т-клетками.

Иммунизация – введение антигенов в организм с целью создания искусственного активного иммунитета или для получения препаратов антител.

Различают:

ксеногенные (гетерологичные) антигены – межвидовые антигены, например – биомолекулы животных при их введении человеку, наиболее сильные антигены;

аллогенные антигены или изоантигены, внутривидовые, отличающие людей (и животных) друг от друга;

аутоантигены – собственные молекулы организма, на которые из-за нарушения аутотолерантности развивается иммунная реакция.

Основными свойствами антигенов являются иммуногенность и специфичность . Под иммуногенностью понимают способность антигена индуцировать в организме иммунную реакцию. Специфичность определяется взаимодействием антигена только с комплементарными ему антителами или рецепторами Т-лимфоцитов определенного клона.

Полноценными антигенами являются природные или синтетические биополимеры, чаще всего белки и полисахариды, а также комплексные соединения (гликопротеиды, липопротеиды, нуклеопротеиды).

Неинфекционные антигены

К неинфекционным антигенам относятся АГ растений, лекарственные препараты, химические, природные и синтетические вещества, антигены клеток животных и человека.

Антигены растений часто вызывают у чувствительных к ним людей аллергические реакции, т.е. являются аллергенами. Пыльца растений - причина поллинозов (пыльцевой аллергии). Пищевые продукты растительного происхождения индуцируют пищевую аллергию.

Практически все химические вещества, особенно ксенобиотики (синтетические вещества не встречающиеся в природе) и лекарства - это гаптены, которые индуцируют аллергию у длительно контактировавших с ними людей.

Среди антигенов тканей и клеток животных и человека различают стромальные антигены, поверхностные клеточные – мембранные АГ, цитоплазматические (микросомальные, микротубулярные), митохондриальные, ядерные (нуклеопротеиды, нуклеиновые кислоты).

Антигены животных по отношению к человеку являются ксеногенными антигенами. Поэтому при введении, например, белков сыворотки животных (лошадиной противодифтерийной и др.) всегда возникает иммунная реакция, которая будет аллергической при повторном их поступлении. Шерсть и перхоть животных (кошек, собак) являются сильными аллергенами для человека.

Инфекционные антигены

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших. Все они могут служить аллергенами, так как вызывают аллергические реакции.

В зависимости от локализации в бактериальной клетке различают К-, Н- и О-антигены (обозначают буквами латинского алфавита).

К-АГ (М.М. около 100кД) – это гетерогенная группа наиболее поверхностных, капсульных АГ бактерий. Характеризуют групповую и типовую принадлежность бактерий.

О-АГ – полисахарид, входит в состав клеточной стенки бактерий, являясь частью липополисахарида (ЛПС). Он особенно выражен у грамотрицательных бактерий. О-АГ определяет антигенную специфичность ЛПС и по нему различают много серовариантов бактерий одного вида.

В целом ЛПС является эндотоксином . Уже в небольших дозах вызывает лихорадку из-за активации макрофагов через CD14 и TLR-4 с выделением ИЛ-1, ИЛ-12, ФНОa и других цитокинов, поликлональную тимуснезависимую активацию В-лимфоцитов и синтез антител, дегрануляцию гранулоцитов, агрегацию тромбоцитов. Он может связываться с любыми клетками организма, но особенно с макрофагами. В больших дозах угнетает фагоцитоз, вызывает токсикоз, нарушение функции сердечно-сосудистой системы, тромбозы, эндотоксический шок. ЛПС некоторых бактерий входит в состав иммуностимуляторов (продигиозан, пирогенал).

Пептидогликаны клеточной стенки бактерий, особенно полученные из них фракции мурамилпептидов обладают сильным адъювантным эффектом на клетки СИ, неспецифически усиливая ответ на различные антигены.

Н-АГ входит в состав бактериальных жгутиков, основа его – белок флагеллин, термолабилен.

Антигены вирусов. У большинства вирусов имеются суперкапсидные – поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные – оболочечные и нуклеопротеидные (сердцевинные) АГ.Определение вирусных антигенов в крови и других биологических жидкостях широко используется для диагностики вирусных инфекций. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин. По строению они вариабельны даже у одного вида вирусов.

Система HLА-онтигенов

На лимфоцитах выявлена целая система молекул лейкоцитарных АГ – HLA , которая контролируется генами главного комплекса гистосовместимости. Комплекс включает около 4х10 6 пар нуклеотидов и состоит из множества тесно сцепленных генетических структурных единиц – локусов, представленных разными генами. Каждый из них может существовать в нескольких вариантах, называемых аллелями. Этот комплекс генов находится у человека в 6 хромосоме.

Продукты этих HLA-генов – HLA-молекулы (антигены ) – это белки клеточных мембран. Их набор у каждого человека индивидуален и только у однояйцевых близнецов он одинаков.

Основные функции HLA-молекул (антигенов):

участвуют в распознавании экзогенных антигенов;

межклеточных взаимодействиях и развитии иммунного ответа;

определяют предрасположенность к заболеваниям;

являются маркерами «своего» – собственных неизмененных клеток;

вызывают реакцию отторжения антиген-несовместимых трансплантатов тканей донора и только тогда они и являются антигенами.

Гены главного комплекса гистосовместимости или у человека – гены HLA системы и соответствующие им HLA-молекулы определяют силу и специфичность иммунного ответа. По существу обычное название – «HLA-антигены» неточно, так как эти молекулы служат антигенами, лишь поступая в другой организм (пересадка тканей, переливание лейкоцитов). Аутологичные HLA-молекулы неантигенны для самого организма и, более того, служат рецепторами для первичного распознавания процессированных антигенов , и в этом их важнейшая физиологическая роль .

Основное значение в иммунорегуляции имеют гены I и II классов гистосовместимости . Локусы генов I класса локализуются в периферическом плече 6 хромосомы, II класса – ближе к центромере.

HLA-АГ I класса имеются на всех ядросодержащих клетках: лимфоцитах, в меньшей степени – на клетках печени, легких, почек, очень редко на клетках мозга и скелетных мышц. Антигены I класса контролируются генными локусами: HLA-A , HLA-B , HLA-C и другими. Они взаимодействуют с антигенными пептидами вирусов, опухолевыми и другими АГ внутри цитоплазмы пораженных клеток. Далее комплекс HLA-АГ – антигенный пептид представляется на клеточной мембране СВ8+ Т-цитотоксическим лимфоцитам (киллерам), которые разрушают измененные клетки.

HLA-AГ II класса (HLA- DR , HLA- DP , HLA- DQ и др.) экспрессированы на В-лимфоцитах, ДК, макрофагах, активированных Т-лимфоцитах, а также появляются на эндотелиальных и эпителиальных клетках после стимуляции их g-интерфероном. Они участвуют в распознавании чужеродных антигенов – пептидов размером до 30 остатков аминокислот. Их основная функция – процессинг (ферментативная переработка) и презентация экзоантигенов CD4+ хелперным клеткам для их последующей активации. Активация Т-хелперов обеспечивает развитие эффективного клеточного и гуморального иммунного ответа на представленный АГ.

6.В-лимфоциты: дифференцировка, функции

В-лимфоциты происходят из ГСК и дифференцируются в эмбриональной печени, затем в костном мозге. У птиц эти клетки созревают в Фабрициевой сумке (bursa). Отсюда они и получили название "В-лимфоциты".

Различают В-1 и В-2 субпопуляции лимфоцитов.

Особая В-1 субпопуляция имеет маркер CD5, возникает из лимфоидной стволовой клетки (ЛСК) и локализуется в брюшной и плевральной полостях, сальнике, миндалинах. Рецепторы этих лимфоцитов и образуемые ими иммуноглобулины класса IgM служат антителами к полисахаридам различных бактерий. Вероятно, это клетки естественного иммунитета, а образуемые иммуноглобулины – естественные антитела. Кроме того, IgM, продуцируемые В-1 лимфоцитами могут быть аутоантителами.

В-2 субпопуляция – обычные В-лимфоциты имеют на поверхности Ig-рецепторы для распознавания антигена. При стимуляции антигенами они созревают в плазмоциты, секретирующие иммуноглобулины – антитела.

На всех этапах дифференцировка В-лимфоцитов определяется активацией и перестройкой соответствующих генов, контролирующих синтез тяжелой и легкой цепей IgM и других молекул. Реаранжировка генов определяет разнообразие этих молекул.

Предсуществует 10 9 -10 16 вариантов В-клеток, исходно запрограммированных на синтез иммуноглобулинов – антител определенной специфичности.

На зрелых В-лимфоцитах имеются мембраносвязанные иммуноглобулины (mIg), преимущественно mIgM и mIgD. В крови 5-15% В-лимфоцитов несут IgM, на многих дополнительно (или только один) присутствует mIgD. Только на 0,3-0,7% находится mIgG (к нему не относятся IgG, связанные через Fcg-рецептор, их больше), редко встречается mIgA – 0,1-0,9% лимфоцитов.

В-лимфоциты через свои рецепторы могут стимулироваться Т-независимыми антигенами (липополисахаридами или полисахаридами) Эти антигены имеют линейно повторяющиеся структуры. С помощью Т-хелперов В-лимфоциты реагируют на остальные антигены.

В норме в крови у человека содержится 17-30% В-клеток от общего числа лимфоцитов.

Итак, В-клетки:

в эмбриогенезе развиваются в печени, а постнатально в костном мозге

аутореактивные В-клетки удаляются в результате «делеции клона» и клональной анергии

стадии дифференцировки проходят путем реаранжировки генов тяжелых цепей иммуноглобулинов

созревание сопровождается изменением экспрессии молекул адгезии и рецепторов под влиянием цитокинов стромы

В-клетки созревают в герминальных центрах лимфоузлов, селезенки и др. при участии ДК и несут IgM-молекулы, IgD и другие иммуноглобулины – рецепторы на поверхности, которые могут взаимодействовать с антигенами

конечная стадия дифференцировки – плазматические клетки – продуцируют иммуноглобулины – антитела различных изотипов (классов)

локализуются в зародышевых центрах лимфоидных органов; Ig-несущие В-клетки циркулируют в крови и лимфе

Динамика иммунного ответа

В условиях реального иммунного ответа при попадании сложного комплексного антигена (например, бактериальной клетки или вируса) в организм иммунные реакции развертываются по неспецифическим и специфическим механизмам.

Неспецифические механизмы иммунного ответа

Первоначально на антиген реагируют неспецифические гуморальные и клеточные факторы иммунной защиты. Более чем в 90% случаев этого бывает достаточно, чтобы предупредить развитие заболевания.

Главную роль в этих процессах играют мононуклеарная система фагоцитов, система гранулоцитов, ЕК-клетки, система комплемента, белки острой фазы воспаления (например, С-реактивный белок), естественные антитела.

После внедрения микробной клетки в макроорганизм одновременно развиваются несколько процессов.

Происходит активация комплемента по альтернативному пути через С3-компонент. В результате образуется мембраноатакующий комплекс С5b-С9, который лизирует микробную клетку. Образуется много антигенных фрагментов. В результате активации комплемента также образуются другие биологически активные компоненты комплемента С3b, а также С3а и С5а – анафилотоксины .

Эти компоненты усиливают иммунный ответ разными путями.

С3b связывается с поверхностью микробной клетки. Далее этот комплекс связывается с мембраной макрофага через рецептор для комплемента CD35. Тем самым он выступает в роли опсонина , вызывая накопление макрофагов в очаге воспаления и стимулируя их адгезию к клетками-мишеням.

Анафилотоксины, особенно С5а, являются наиболее мощными хемоаттрактантами. Они привлекают нейтрофилы и макрофаги, вызывая их оседание в очаге воспаления.

Белки острой фазы воспаления (С-реактивный белок, фибронектин и др) связываются с микробной клеткой, препятствуя процессам микробной инвазии. Кроме того, С-реактивный белок активирует комплемент через С1 компонент по лектиновому пути с последующим образованием МАК и лизисом микробной клетки.

Естественные антитела обычно обладают низкой аффинностью к АГ и полиреактивностью. Обычно они продуцируются особой субпопуляцией СD5+ В-лимфоцитов. Вследствие разности в зарядах такие АТ связываются с АГ микробной клетки и могут активировать комплемент по классическому пути. Кроме того, они связываются с СД16 на поверхности нейтрофилов и макрофагов и вызывают адгезию фагоцитов и клеток-мишеней, выступая в роли опсонинов (иммунный фагоцитоз ).

Также естественные АТ могут обладать собственной каталитической (абзимной ) активностью, что приводит к гидролизу поступившего антигена.

Однако наибольшее значение в динамике иммунного ответа на первых этапах имеют неспецифические клеточные реакции.

Основную роль здесь играет фагоцитоз микробных клеток нейтрофилами и макрофагами. Под действием хемокинов (анафилотоксинов, ИЛ-8) они мигрируют и оседают в очаге воспаления. Сильным стимулятором хемотаксиса фагоцитов являются также компоненты клеточной стенки микроба Далее происходит адгезия фагоцитов на клетках-мишенях. Она обеспечивается взаимодействием лектиновых рецепторов макрофага с полисахаридами клеточной стенки микроба, в результате процессов опсонизации микробов антителами и компонентами комплемента, а также через систему Toll-like рецепторов. Последнее взаимодействие играет особую роль, так как в зависимости от своей природы, АГ активирует определенный вид TLR. Это перенаправляет иммунный ответ либо по клеточному, либо по гуморальному пути.

Одновременно макрофаги выделяют комплекс провоспалительных цитокинов (ИЛ-1, aФНО, гамма-интерферон), которые активируют преимущественно Тх1 с развитием воспаления.

Этот процесс может существенно усиливаться вследствие связывания ЛПС бактерий с CD14 рецептором макрофага и TLR-4. При этом массивный выброс провоспалительных цитокинов вызывает лихорадку и может приводить к эндотоксическому шоку.

Важным компонентом неспецифического ответа является действие ЕК-клеток. Установлено, что они могут атаковать большинство клеток-мишеней независимо от их происхождения. Однако в организме на мембранах ядросодержащих клеток имеются HLA АГ I класса. При взаимодействии с ними ЕК получают сигнал, который в норме подавляет их активацию. При изменении экспрессии HLA АГ I класса в результате поражения клетки вирусом или ее опухолевой трансформации происходит активация ЕК, выделение перфорина и лизис измененной клетки-мишени. Кроме того, ЕК активируются, взаимодействуя своими Fc-рецепторами с антителами, адсорбированными на мембранных АГ чужеродных клеток (антителозависимая клеточная цитотоксичность ).

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

Введение



Введение

Главная функция иммунной системы - сохранять "свое" и устранять чужеродное. Носители "чужого" с которыми иммунная система сталкивается повседневно, - это прежде всего микроорганизмы. Кроме них, она способна устранять злокачественные новообразования и отторгать трансплантанты чужеродных тканей. Для этого иммунная система обладает сложнейшим набором постоянно взаимодействующих неспецифических и специфических механизмов. Неспецифические механизмы относятся к врожденным, а специфические приобретаются в процессе "иммунологического обучения".

Специфический и неспецифический иммунитет

Неспецифический (врожденный) иммунитет обуславливает однотипные реакции на любые чужеродные антигены. Главным клеточным компонентом системы неспецифического иммунитета служат фагоциты, основная функция которых - захватывать и переваривать проникающие извне агенты. Для возникновения подобной реакции чужеродный агент должен иметь поверхность, т.е. быть частицей (например, заноза).

Если же вещество молекулярно-дисперсное (например: белок, полисахарид, вирус), и при этом не токсичное и не обладает физиологической активностью - оно не может быть нейтрализовано и выведено организмом по вышеописанной схеме. В этом случае реакцию обеспечивает специфический иммунитет. Он приобретается в результате контакта организма с антигеном; имеет приспособительное значение и характеризуется формированием иммунологической памяти. Его клеточными носителями служат лимфоциты, а растворимыми - иммуноглобулины (антитела).

Первичный и вторичный иммунный ответ

Специфические антитела продуцируются специальными клетками - лимфоцитами. Причем для каждого вида антител существует свой тип лимфоцитов (клон).

Первое взаимодействие антигена (бактерии или вируса) с лимфоцитом вызывает реакцию, названную первичным иммунным ответом, в ходе которого лимфоциты начинают развиваться (пролиферировать) в виде клонов, претерпевая затем дифференцировку: некоторые из них становятся клетками памяти, другие превращаются в зрелые клетки, продуцирующие антитела. Главные особенности первичного иммунного ответа - существование латентного периода до появления антител, затем выработка их лишь в небольшом количестве.

Вторичный иммунный ответ развивается при последующем контакте с тем же самым антигеном. Основная особенность - быстрая пролиферация лимфоцитов с дифференцировкой их в зрелые клетки и быстрая выработка большого количества антител, которые высвобождаются в кровь и тканевую жидкость, где могут встретиться с антигеном и эффективно побороть болезнь.

Естественный и искусственный иммунитет

К факторам естественного иммунитета относят иммунные и неиммунные механизмы. К первым относятся гуморальные (система комплемента, лизоцим и др. белки). Ко вторым относятся барьеры (кожа, слизистая), секрет потовых, сальных, слюнных желез (содержит разнообразные бактерицидные вещества), желез желудка (соляная кислота и протеолитические ферменты), нормальная микрофлора (антагонисты патогенных микроорганизмов).

Искусственный иммунитет вырабатывает при введении в организм вакцины или иммуноглобулина.

Активный и пассивный иммунитет

Существует два вида иммунитета: активный и пассивный.

Активная иммунизация стимулирует собственный иммунитет человека, вызывая выработку собственных антител. Вырабатывается у человека в ответ на возбудитель. Образуются специализированные клетки (лимфоциты), которые продуцируют антитела к конкретному возбудителю. После инфекции в организме остаются "клетки памяти", и в случае последующих столкновений с возбудителем начинают снова (уже быстрее) продуцировать антитела.

Активный иммунитет может быть естественным и искусственным. Естественный приобретается в результате перенесенного заболевания. Искусственный вырабатывается при введении вакцин.

Пассивный иммунитет : в организм вводятся уже готовые антитела (гамма-глобулин). Введенные антитела в случае столкновения с возбудителем "расходуются" (связываются с возбудителем в комплекс "антиген-антитело"), если встречи с возбудителем не произошло, они имеют некий период полужизни, после чего распадаются. Пассивная иммунизация показана в тех случаях, когда необходимо в короткие сроки создать иммунитет на непродолжительное время (например, после контакта с больным).

Когда ребенок появляется на свет, он обычно имеет иммунитет (невосприимчивость) к некоторым инфекциям. Это заслуга борющихся с болезнями антител, которые передаются через плаценту от матери к будущему новорожденному. Передаются антитела против возбудителей тех болезней, которыми мать переболела или против которых была иммунизирована. Впоследствии, вскармливаемый грудью младенец постоянно получает дополнительную порцию антител с молоком матери. Это естественный пассивный иммунитет . Он также носит временный характер, угасая к концу первого года жизни.

Стерильный и нестерильный иммунитет

После заболевания в некоторых случаях иммунитет сохраняется пожизненно. Например корь, ветряная оспа. Это стерильный иммунитет. А в некоторых случаях иммунитет сохраняется только до тех пор, пока в организме есть возбудитель (туберкулез, сифилис) - нестерильный иммунитет.

6. Регуляция иммунного ответа

Иммунный ответ

Клеточный иммунный ответ

Гуморальный иммунный ответ

Т-хелперы 1го типа

Т-хелперы 2го типа

Т-хелперы 3готипа

Механизм иммунного ответа

3. Активация лимфоцитов;

6. Деструкция антигена.

Механизмы цитолиза антигена:



Цитолиз антигена с участием системы комплемента

1. Комплементзависимый лизис антигена. При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента . Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий:

При встрече антигена и антитела образуется комплекс белков С1. К ним присоединяются белки С2 и С4К ним присоеденяется белок С3 конвертаза. С3 является центральным компонентом этого каскада. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. При гидролизе С3 образуются фрагменты белков С3б и С3а. К ним присоединяется белки С5.

Белки С5 и С6 системы комплемента связываются с мембраной клетки антигена, к ним присоединяются белки С7, С8, С9. Эти белки образуют мембраноатакующий комплекс , который образует в мембране антигена пору. Через эту пору мембраноатакующий комплекс проходит в тело антигена и лизирует (разрушает) антиген.

Регуляция иммунного ответа

1. Нейро-эндокринный механизм. Регуляция функций и всех защитных реакций организма, в т.ч. и иммуногенеза, осуществляется под контролем центральной нервной и эндокринной систем. При воздействии микроба-стрессора на периферические ткани и органы чувств сигналы об этом по нервным путям поступают в гипоталамус. Гипоталамус, получив информацию, начинает выделять гормоны, воздействующие на гипофиз – рабочую железу, являющуюся общим регулятором эндокринной системы. Гипофиз выделяет аденокортикотропный гормон (АКТГ). Он поступает в кровь и лимфу и действует на периферические эндокринные железы, в частности на кору надпочечника. Там он стимулирует образование противовоспалительного гормона – кортизона, являющегося иммунодепресантом (угнетает деятельность системы мононуклеарных фагоцитов и иммунокомпетентных клеток, образующих антитела).



Помимо АКТГ, гипофиз выделяет гормон роста (соматотрофный гормон), который наоборот повышает реактивность тканей, стимулирует воспалительную реакцию, деятельность макрофагов, иммуноцитов, плазмоцитов, синтез антител. Гормоны, вырабатываемые в центральных органах СИ (тимозин в тимусе, стимулятор антителопродуцентов (САП) в костном мозге), также влияют на состояние Т- и В-системы иммунитета, обеспечивает нормальное созревание и функционирование.

2. Ауторегуляторный механизм. Пусковая роль в иммунном ответе принадлежит антигенному воздействию на иммунокомпетентные клетки. Важным условием для полноценного иммунного ответа является взаимное кооперирование макрофагов, Т- и В-лимфоцитов. В основе управления деятельности ИС находится ауторегуляторный механизм. Иммунитету, как всякой саморегулирующейся системе, необходимо самоограничение или обратная отрицательная связь. Когда иммунный ответ достигнет пика, включаются тормозные механизмы, снижающие активность образования плазматических и Т-киллеров. Это происходит за счет образования клона Т- и В-супрессоров, клетками-мишенями для которых служат Т-хелперы, плазматические клетки и макрофаги. Кроме того, антитела, вырабатываемые в ходе иммунного ответа, сами на себя или в комплексе с антигеном способны индуцировать синтез антиидиотипических антител.

3. Генетический контроль иммунного ответа осуществляется МНС. Ir – гены контролируют высоту иммунного ответа, Ia – гены играют роль в кооперативном взаимодействии В- и Т-лимфоцитов и макрофагов при иммунном ответе, а также играют роль в функции клеток-супрессоров, подавляющих иммунный ответ.

Интерпретация иммунограммы

1. Характеристика системы врожденного иммунитета:

1. Количество нейтрофилов и моноцитов крови

2. Величина показателей оценки фагоцитоза

3. Уровень естественных киллеров и больших гранулярных лимфоцитов

4. Сывороточный титр комплемента

5. Концентрация отдельных компонентов комплемента в сыворотке крови

6. Концентрация лизоцима в секретах

2. Характеристика клеточного звена иммунитета:

Клеточное звено является превалирующим при вирусных, грибковых патогенах, атипичных возбудителях (микоплазмы, хламидии), бактериальных инфекциях с внутриклеточным пребыванием возбудителя (микобактерии), а также при иммунном ответе на опухоли и тканевые формы гельминтов (например, личинки аскариды или трихинеллы).

3. Характеристика гуморального звена иммунитета:

1. Уровни CD3-CD19+, CD3-CD20+, CD3-CD21+ и CD3-CD22+-клеток (В-лимфоцитов в разные фазы созревания),

2. Уровни иммуноглобулинов разных классов (IgМ, IgG, IgE, сывороточного и секреторного IgA).

3. Уровень Т-хелперов (CD3+СD4+ Т-лимфоцитов)

Гуморальное звено является преобладающим при бактериальных инфекциях с внеклеточным пребыванием патогена (стрептококки, стафилококки, эшерихии, синегнойная палочка, протей и др.), а также при полостных протозойных и гельминтных инвазиях.

ЛЕКЦИЯ №7. МЕХАНИЗМЫ ИММУННОГО ОТВЕТА

1. Стадии иммунного ответа по клеточному типу

2. Стадии иммунного ответа по гуморальному типу

3. Цитолиз антигена с участием системы комплемента

4. Цитолиз антигена путем фагоцитоза

5. Цитолиз антигена с участием цитотоксических Т-лимфоцитов (Т-киллеров)

6. Регуляция иммунного ответа

Иммунный ответ – это процесс вз/д клеток иммунной системы, который индуцируется антигеном и приводит к образованию АТ или иммунных лимфоцитов. При этом специфические реакции всегда сопровождается неспецифическими: такими как фагоцитоз, активация комплемента, НК-клеток и т.д.

По механизму формирования различают 2 типа иммунного ответа: клеточный и гуморальный.

Клеточный иммунный ответ формируется в основном на АГ вирусов, опухолевых клеток и пересаженных чужеродных клеток. Его основные эффекторные клетки – Т-лимфоциты: Т-хелперы, Т-киллеры а также Т-клетки памяти.

Гуморальный иммунный ответ – это основа антитоксического, антибактериального и антигрибкового иммунитета. В его развитии участвуют В-ЛФ: они дифференцируются в плазматические клетки, синтезирующие антитела; и В-клетки памяти.

Развитие того или иного типа иммунного ответа направляется цитокинами Т-хелперов. В зависимости от секретируемых цитокинов Т-хелперы подразделяются на Т-хелперы 1-го, 2-го и 3-го типа.

Т-хелперы 1го типа выделяют ИЛ -2, 7, 9, 12, 15, γ-ИФН и TNF-α. Эти цитокины – основные индукторы клеточного иммунного ответа и соответствующего воспаления.

Т-хелперы 2го типа выделяют ИЛ – 2, 4, 5, 6, 10, 13, 14 и др., которые активируют гуморальный иммунный ответ.

Т-хелперы 3готипа выделяют трансформирующий фактор роста -β (TGF- β) – это основной супрессор иммунного ответа - их название – Т-супрессоры (не все авторы признают существование отдельной популяции Тх-3).

Механизм иммунного ответа

Для реализации иммунного ответа необходимы три типа клеток – макрофаг (или дендритная клетка), Т-лимфоцит и В-лимфоцит.

Основными стадиями иммунного ответа являются:

1. Эндоцитоз антигена, его обработка и презентация лимфоцитам;

2. Распознавание антигена лимфоцитами;

3. Активация лимфоцитов;

4. Клональная экспансия или пролиферация лимфоцитов;

5. Созревание эффекторных клеток и клеток памяти.

6. Деструкция антигена.

Механизмы цитолиза антигена:

1. Цитолиз антигена с участием системы комплемента

2. Цитолиз антигена путем фагоцитоза

3. Цитолиз антигена с участием цитотоксических Т-лимфоцитов (Т-киллеров)

Лимфоидные клетки организма выполняют основную функцию в развитии иммунитета - невосприимчивости, не только по отношению к микроорганизмам, но и ко всем генетически чужеродным клеткам, например при пересадке тканей. Лимфоидные клетки обладают способностью отличать "свое" от "чужого" и устранять "чужое" (элиминировать).

Родоначальницей всех клеток иммунной системы является кроветворная стволовая клетка. В дальнейшем происходит развитие двух типов лимфоцитов: Т и В (тимусзависимых и бурсазависимых). Эти названия клетки получили в связи с их происхождением. Т-клетки развиваются в тимусе (зобной, или вилочковой железе) и под влиянием веществ, выделяемых тимусом, в периферической лимфоидной ткани.

Название В-лимфоциты (бурсазависимые) произошло от слова "бурса" - сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В-лимфоцитами человека. Хотя у человека не найдено органа, аналогичного сумке Фабрициуса, название связано с этой сумкой.

При развитии В-лимфоцитов из стволовой клетки они проходят несколько стадий и преобразуются в лимфоциты, способные образовывать плазматические клетки. Плазматические клетки в свою очередь образуют антитела и на их поверхности имеются иммуноглобулины трех классов: IgG, IgM и IgA (рис. 32).


Рис. 32. Сокращенная схема развития иммуноцитов

Иммунный ответе виде продукции специфических антител происходит следующим образом: чужеродный антиген, проникнув в организм, прежде всего фагоцитируется макрофагами. Макрофаги, перерабатывая и концентрируя антиген на своей поверхности, передают информацию о нем Т-клеткам, которые начинают делиться, "созревают" и выделяют гуморальный фактор, включающий в антителопродукцию В-лимфоциты. Последние также "созревают", развиваются в плазматические клетки, которые и синтезируют антитела заданной специфичности.

Так, соединенными усилиями макрофаги, Т- и В-лимфоциты осуществляют иммунные функции организма - защиту от всего генетически чужеродного, в том числе и от возбудителей инфекционных болезней. Защита с помощью антител осуществляется таким образом, что синтезированные к данному антигену иммуноглобулины, соединяясь с ним (антигеном), подготавливают его, делают чувствительным к разрушению, обезвреживанию различными естественными механизмами: фагоцитами, комплементом и пр.



Контрольные вопросы

1. Какова роль макрофагов в иммунном ответе?

2. Какова роль Т-лимфоцитов в иммунном ответе?

3. Какова роль В-лимфоцитов в иммунном ответе?

Теории иммунитета . Значение антител в развитии иммунитета неоспоримо. Каков же механизм их образования? Этот вопрос в течение длительного времени является предметом споров и обсуждений.

Создано несколько теорий антителообразования, которые можно разделить на две группы: селективные (селекция - отбор) и инструктивные (инструктировать - наставлять, направлять).

Селективные теории предполагают существование в организме уже готовых антител к каждому антигену или клеток, способных синтезировать эти антитела.

Так, Эрлих (1898) предполагал, что клетка имеет готовые "рецепторы" (антитела), которые соединяются с антигеном. После соединения с антигеном, антитела образуются еще в большем количестве.

Такого же мнения придерживались создатели других селективных теорий: Н. Ерне (1955) и Ф. Бернет (1957). Они утверждали, что уже в организме плода, а затем и во взрослом организме имеются клетки, способные к взаимодействию с любым антигеном, но под влиянием определенных антигенов определенные клетки вырабатывают "нужные" антитела.

Инструктивные теории [Гауровитц Ф., Полинг Л., Ландштейнер К., 1937-1940] рассматривают антиген, как "матрицу", штамп, на котором формируются специфические группировки молекулы антител.

Однако эти теории не объясняли всех явлений иммунитета и в настоящее время наиболее принятой является клонально-селекционная теория Ф. Бернета (1964). Согласно этой теории в эмбриональном периоде в организме плода имеется множество лимфоцитов - клеток-предшественников, которые при встрече с собственными антигенами разрушаются. Поэтому во взрослом организме уже нет клеток для выработки антител к собственным антигенам. Однако, когда взрослый организм встречается с чужеродным антигеном, происходит селекция (отбор) клона иммунологически активных клеток и они вырабатывают специфические антитела, направленные против данного "чужого" антигена. При повторной встрече с этим антигеном клеток "отобранного" клона уже больше и они быстрее образуют большее количество антител. Эта теория наиболее полно объясняет основные явления иммунитета.

Механизм взаимодействия антигена и антител имеет различные объяснения. Так, Эрлих уподоблял их соединение реакции между сильной кислотой и сильным основанием с образованием нового вещества типа соли.

Бордэ считал, что антиген и антитела взаимно адсорбируют друг друга подобно краске и фильтровальной бумаге или йоду и крахмалу. Однако эти теории не объясняли главного - специфичности иммунных реакций.

Наиболее полно механизм соединения антигена и антитела объяснен гипотезой Маррека (теория "решетки") и Полинга (теория "фермы") (рис. 33). Маррек рассматривает соединение антигена и антител в виде решетки, в которой антиген чередуется с антителом, образуя решетчатые конгломераты. Согласно гипотизе Полинга (см. рис. 33) антитела имеют две валентности (две специфические детерминанты), а антиген несколько валентностей - он поливалентен. При соединении антигена и антител образуются агломераты, напоминающие "фермы" построек.



Рис. 33. Схематическое изображение взаимодействия антител и антигена. А - по схеме Маррска: Б - по схеме Полинга. Структура комплекса: а - при оптимальных соотношениях; б - при избытке антигена; в - при избытке антител

При оптимальном соотношении антигена и антител образуются большие прочные комплексы, видимые простым глазом. При избытке антигена каждый активный центр антител заполнен молекулой антигена, не хватает антител для соединения с другими молекулами антигена и образуются мелкие, невидимые глазом комплексы. При избытке антител, для образования решетки не хватает антигена, детерминанты антител отсутствуют и видимого проявления реакции нет.

На основании изложенных теорий специфичность реакции антиген - антитело сегодня представляют как взаимодействие детерминантной группы антигена и активных центров антитела. Так как антитела формируются под воздействием антигена, их структура соответствует детерминантным группам антигена. Детерминантная группа антигена и фрагменты активных центров антитела имеют противоположные электрические заряды и, соединяясь, образуют комплекс, прочность которого зависит от соотношения компонентов и среды, в которой они взаимодействуют.

Учение об иммунитете - иммунология - достигло за последние десятилетия больших успехов. Раскрытие закономерностей иммунного процесса позволило решить различные задачи во многих областях медицины. Разработаны и совершенствуются методы предупреждения многих инфекционных заболеваний; лечения инфекционных и ряда других (аутоиммунных, иммунодефицитных) болезней; предупреждения гибели плода при резус-конфликтных ситуациях; трансплантации тканей и органов; борьбы со злокачественными новообразованиями; иммунодиагностики - использования реакций иммунитета в диагностических целях.

Реакции иммунитета - это реакции между антигеном и антителом или между антигеном и сенсибилизированными * лимфоцитами, которые происходят в живом организме и могут быть воспроизведены в лабораторных условиях.

* (Сенсибилизированные - повышенно чувствительные. )

Реакции иммунитета вошли в практику диагностики инфекционных болезней в конце XIX - начале XX века. В силу высокой чувствительности (улавливают антигены в очень больших разведениях) и, главное, строгой специфичности (позволяют отличить близкие по составу антигены) они нашли широкое применение в решении теоретических и практических вопросов медицины и биологии. Этими реакциями пользуются иммунологи, микробиологи, инфекционисты, биохимики, генетики, молекулярные биологи, экспериментальные онкологи и врачи других специальностей.

Реакции антигена с антителом называются серологическими (от лат. serum - сыворотка) или гуморальными (от лат. humor - жидкость), потому что участвующие в них антитела (иммуноглобулины) всегда находятся в сыворотке крови.

Реакции антигена с сенсибилизированными лимфоцитами называются клеточными.

Контрольные вопросы

1. Как образуются антитела?

2. Какие Вы знаете теории образования антител?

3. Каков механизм взаимодействия антигена с антителом?

Серологические реакции

Серологические реакции - реакции взаимодействия между антигеном и антителом протекают в две фазы: 1-я фаза - специфическая - образование комплекса антигена и соответствующего ему антитела (см. рис. 33). Видимого изменения в этой фазе не происходит, но образовавшийся комплекс становится чувствительным к неспецифическим факторам, находящимся в среде (электролиты, комплемент, фагоцит); 2-я фаза - неспецифическая. В этой фазе специфический комплекс антиген - антитело взаимодействует с неспецифическими факторами среды, в которой происходит реакция. Результат их взаимодействия может быть видим невооруженным глазом (склеивание, растворение и т. п.). Иногда эти видимые изменения отсутствуют.

Характер видимой фазы серологических реакций зависит от состояния антигена и условий среды, в которой происходит его взаимодействие с антителом. Различают реакции агглютинации, преципитации, иммунного лизиса, связывания комплемента и др. (табл. 14).


Таблица 14. Серологические реакции в зависимости от участвующих в них компонентов и условий среды

Применение серологических реакций . Одно из основных применений серологических реакций - лабораторная диагностика инфекций. Их используют: 1) для выявления антител в сыворотке больного, т. е. для серодиагностики; 2) для определения вида или типа антигена, например выделенного от больного микроорганизма, т. е. для его идентификации.

При этом неизвестный компонент определяют по известному. Например, для обнаружения антител в сыворотке больного берут известную лабораторную культуру микроорганизма (антиген). Если сыворотка реагирует с ним, значит она содержит соответствующие антитела и можно думать, что данный микроб является возбудителем болезни у обследуемого больного.

Если нужно определить, какой микроорганизм выделен, его испытывают в реакции с известной диагностической (иммунной) сывороткой. Положительный результат реакции говорит о том, что данный микроорганизм идентичен тому, которым иммунизировали животное для получения сыворотки (табл. 15).



Таблица 15. Применение серологических реакций

Серологические реакции применяют также для определения активности (титра) сывороток и в научных исследованиях.

Проведение серологических реакций требует особой подготовки.

Посуда для серологических реакций должна быть чистой и сухой. Применяют пробирки (бактериологические, агглютинационные, преципитационные и центрифужные), пипетки градуированные разного размера и пастеровские * , колбы, цилиндры, предметные и покровные стекла, чашки Петри, пластины из пластмассы с лунками.

* (Каждый ингредиент реакции разливают отдельной пипеткой. Пипетки следует сохранять до конца постановки опыта. Для этого удобно помещать их в стерильные пробирки с пометками, где какая пипетка. )

Инструменты и оборудование: петля, штативы, лупа, агглютиноскоп, термостат, холодильник, центрифуга, весы химические с разновесом.

Материалы: антитела (иммунные и исследуемые сыворотки), антигены (культуры микроорганизмов, диагностикумы, экстракты, лизаты, гаптены, эритроциты, токсины), комплемент, изотонический раствор натрия хлорида.

Внимание! В серологических реакциях применяют только химически чистый натрия хлорид.

Сыворотки . Сыворотка больного. Сыворотку обычно получают на второй неделе болезни, когда можно ожидать наличие в ней антител, иногда пользуются сыворотками реконвалесцентов (выздоравливающих) и переболевших.

Чаще всего для получения сыворотки кровь берут из вены в количестве 3-5 мл в стерильную пробирку и направляют в лабораторию, сопровождая этикеткой, с указанием фамилии и инициалов больного, предполагаемого диагноза и даты.

Кровь следует брать натощак или не раньше чем через 6 ч после еды. В сыворотке крови после еды могут содержаться капельки жира, которые делают ее мутной и непригодной для исследования (такая сыворотка называется хилезной).

Внимание! При взятии крови необходимо соблюдать правила асептики.

Для получения сыворотки кровь оставляют на 1 ч при комнатной температуре или ставят в термостат при 37° С на 30 мин для образования сгустка.

Внимание! Не следует держать сыворотку в термостате больше 30 мин - может произойти гемолиз, что помешает проведению исследований.

Образовавшийся сгусток отделяют от стенок пробирки пастеровской пипеткой или петлей ("обводят"). Пробирку помещают в холодильник на некоторое время (обычно 1 ч, но не более 48 ч) для лучшего отделения сыворотки из сжавшегося на холоде сгустка. Затем сыворотку отсасывают стерильной пастеровской пипеткой, снабженной резиновым баллоном или шлангом.

Отсасывать сыворотку следует очень осторожно, чтобы не захватить форменные элементы. Сыворотка должна быть совершенно прозрачной без примеси клеток. Мутные сыворотки еще раз отсасывают после того, как клетки осядут. Сыворотку можно освободить от форменных элементов центрифугированием.

Внимание! На сгустке сыворотка может оставаться не более 48 ч при + 4° С.

Для получения сыворотки кровь можно брать из прокола мякоти пальца или мочки уха пастеровской пипеткой. У грудных детей кровь берут из У-образного разреза на пятке.

При использовании пастеровской пипетки кровь насасывают в пипетку из прокола. Острый конец пипетки запаивают. Пипетку помещают в пробирку острым концом вниз. Чтобы он не сломался, на дно пробирки кладут кусочек ваты. Пробирку с соответствующей этикеткой направляют в лабораторию. Скопившуюся в широком конце пипетки сыворотку отсасывают.

Иммунные сыворотки получают из крови людей или животных (чаще кроликов и лошадей), иммунизированных по определенной схеме соответствующим антигеном (вакциной). В полученной сыворотке определяют ее активность (титр), т. е. наибольшее разведение, в котором она реагирует с соответствующим антигеном в определенных условиях опыта.

Готовят сыворотки обычно на производстве. Их разливают в ампулы, на которых указывают название и титр. В большинстве случаев сыворотки высушивают. Сухую сыворотку перед употреблением растворяют в дистиллированной воде до первоначального объема (тоже указан на этикетке). Хранят все сухие (лиофилизированные) диагностические" препараты при 4-10° С.

Для серологических исследований применяют иммунные сыворотки нативные (не адсорбированные) и адсорбированные. Недостаток нативных сывороток - наличие в них групповых антител, т. е. антител к микроорганизмам, имеющим общие антигены. Обычно такие антигены встречаются у микробов, принадлежащих к одной группе, роду, семейству. Адсорбированные сыворотки отличаются строгой специфичностью: реагируют только с гомологичным антигеном. Антитела к другим (гетерогенным) антигенам удалены адсорбцией. Титр антител адсорбированных сывороток низкий (1:40, 1:320), поэтому их не разводят * .

* (В настоящее время методом биотехнологии получены особые клетки (гибридомы), вырабатывающие in vitro моноклональные антитела, т. е. антитела, реагирующие строго специфично (с одним антигеном). )

Реакция агглютинации

Реакция агглютинация (РА) - это склеивание и выпадение в осадок микробов или других клеток под действием антител в присутствии электролита (изотонического раствора натрия хлорида). Образовавшийся осадок называют агглютинатом. Для реакции необходимы:

1. Антитела (агглютинины) - находятся в сыворотке больного или в иммунной сыворотке.

2. Антиген - взвесь живых или убитых микроорганизмов, эритроцитов или других клеток.

3. Изотонический раствор.

Реакцию агглютинации для серодиагностики широко применяют при брюшном тифе, паратифах (реакция Видаля), бруцеллезе (реакция Райта) и др. Антителом при этом является сыворотка больного, а антигеном - известный микроб.

При идентификации микробов или других клеток антигеном служит их взвесь, а антителом - известная иммунная сыворотка. Эту реакцию широко применяют при диагностике кишечных инфекций, коклюша и др.

Подготовка ингредиентов: 1) получение сыворотки см. с. 200; 2) приготовление антигена. Взвесь живых микробов должна быть гомогенной и соответствовать (в 1 мл) примерно 30 ед. мутности по оптическому стандарту ГИСК. Для ее приготовления обычно используют 24-часовую культуру, выращенную на скошенном агаре. Культуру смывают 3-4 мл изотонического раствора, переносят в стерильную пробирку, определяют ее густоту и, если нужно, разводят.

Применение взвеси убитых микробов - диагностикумов - облегчает работу и делает ее безопасной. Обычно пользуются диагностикумами, приготовленными на производстве.

Постановка реакции. Существует два метода проведения этой реакции: реакция агглютинации на стекле (иногда ее называют ориентировочной) и развернутая реакция агглютинации (в пробирках).

Реакция агглютинации на стекле . На обезжиренное предметное стекло наносят 2 капли специфической (адсорбированной) сыворотки и каплю изотонического раствора. Неадсорбированные сыворотки предварительно разводят в соотношении 1:5 - 1:25. Капли на стекло наносят так, чтобы между ними было расстояние. Восковым карандашом на стекле помечают, где какая капля. Культуру петлей или пипеткой тщательно растирают на стекле, а потом вносят в каплю изотонического раствора и в одну из капель сыворотки, размешивая в каждой до образования гомогенной взвеси. Капля сыворотки, в которую не внесена культура, является контролем сыворотки.

Внимание! Нельзя переносить культуру из сыворотки в каплю изотонического раствора, которая является контролем антигена.

Реакция протекает при комнатной температуре в течение 1-3 мин. Контроль сыворотки должен оставаться прозрачным, а в контроле антигена должна наблюдаться равномерная муть. Если в капле, где культура смешана с сывороткой, появятся хлопья агглютината на фоне прозрачной жидкости, результат реакции считают положительным. При отрицательном результате реакции в капле будет равномерная муть, как в контроле антигена.

Реакция отчетливее видна, если ее рассматривать на темном фоне в проходящем свете. При ее изучении можно пользоваться лупой.

Развернутая реакция агглютинации . Готовят последовательные, чаще всего двукратные разведения сыворотки. Сыворотку больного обычно разводят от 1:50 до 1:1600, иммунную - до титра или до половины титра. Титр агглютинирующей сыворотки - ее максимальное разведение, в котором она агглютинирует гомологичные клетки.

Разведение сыворотки: 1) ставят в штатив нужное количество пробирок одинакового диаметра, высоты и конфигурации дна;

2) на каждой пробирке указывают степень разведения сыворотки, кроме того, на 1-й пробирке пишут номер опыта или название антигена. На пробирках контролей пишут "КС" - контроль сыворотки и "КА" - контроль антигена;

3) во все пробирки наливают по 1 мл изотонического раствора;

4) в отдельной пробирке готовят исходное (рабочее) разведение сыворотки. Например, для приготовления рабочего разведения 1:50, в пробирку наливают 4,9 мл изотонического раствора и 0,1 мл сыворотки. На пробирке обязательно указывают степень ее разведения. Исходное разведение сыворотки вносят в первые две пробирки и в пробирку контроля сыворотки;

5) готовят последовательные двукратные разведения сыворотки.

Примерная схема ее разведения приведена в табл. 16.



Таблица 16. Схема разведения сыворотки для развернутой РА

Примечание. Стрелки указывают перенос жидкости из пробирки в пробирку; из 5-й пробирки и пробирки контроля сыворотки 1,0 мл выливают в дезинфицирующий раствор.

Внимание! Во всех пробирках должен быть одинаковый объем жидкости.

После того как сделаны разведения сыворотки, во все пробирки, кроме контроля сыворотки, вносят по 1-2 капли антигена (диагностикума или свежеприготовленной взвеси бактерий). В пробирках при этом должна появиться небольшая равномерная муть. Контроль сыворотки остается прозрачным.

Пробирки тщательно встряхивают и помещают в термостат (37° С). Предварительный учет результатов реакции производят через 2 ч, а окончательный - спустя 18-20 ч (выдерживая при комнатной температуре).

Учет результатов как всегда начинают с контролей. Контроль сыворотки должен оставаться прозрачным, контроль антигена - равномерно мутным. Просматривают пробирки в проходящем свете (очень удобно на темном фоне) невооруженным глазом, с помощью лупы или агглютиноскопа.

Агглютиноскоп - прибор, состоящий из полой металлической трубки, укрепленной на подставке. Сверху на ней расположен окуляр с регулирующим винтом. Под трубкой прикреплено вращающееся зеркало. Пробирку с изучаемой жидкостью вставляют сбоку в отверстие трубки на такое расстояние, чтобы находящаяся в ней жидкость была под окуляром. Установив с помощью зеркала освещение и сфокусировав окуляр, определяют наличие и характер агглютината.

При положительном результате реакции в пробирках видны зерна или хлопья агглютината. Агглютинат постепенно оседает на дно в виде "зонтика", а жидкость над осадком просветляется (сравните с равномерно мутным контролем антигена).

Для изучения величины и характера осадка содержимое пробирок слегка встряхивают. Различают мелкозернистую и хлопьевидную агглютинацию. Мелкозернистая (О-агглютинация) получается при работе с О-сыворотками * . Хлопьевидная (Н) - при взаимодействии подвижных микроорганизмов со жгутиковыми Н-сыворотками.

* (О-сыворотки содержат антитела к О (соматическому)-антигену, Н-сыворотки - к жгутиковому. )

Хлопьевидная агглютинация наступает быстрее, образующийся при этом осадок очень рыхлый и легко разбивается.

Интенсивность реакции выражают следующим образом:

Все клетки осели, жидкость в пробирке совершенно прозрачна. Результат реакции резко положительный.

Осадок меньше, нет полного просветления жидкости. Результат реакции положительный.

Осадок еще меньше, жидкость мутная. Результат реакции слабо положительный.

Незначительный осадок, жидкость мутная. Сомнительный результат реакции.

Осадка нет, жидкость равномерно мутная, как в контроле антигена. Отрицательный результат реакции.

Возможные ошибки при постановке реакции агглютинации . 1. Спонтанная (самопроизвольная) агглютинация. Некоторые клетки, особенно микробы в R-форме, не дают однородной (гомогенной) взвеси, быстро выпадают в осадок. Во избежание этого следует пользоваться культурой в S-форме, которая не дает спонтанной агглютинации.

2. В сыворотке здоровых людей имеются антитела к некоторым микроорганизмам (так называемые "нормальные антитела"). Титр их невысок. Поэтому положительный результат реакции в разведении 1:100 и выше говорит о ее специфичности.

3. Групповая реакция с близкими по антигенному строению микробами. Например, сыворотка больного брюшным тифом может также агглютинировать бактерии паратифа А и Б. В отличие от специфической групповая реакция идет в более низких титрах. Адсорбированные сыворотки не дают групповой реакции.

4. Следует учесть, что специфические антитела после перенесенной болезни и даже после прививок могут сохраняться длительное время. Они называются "анамнестическими". Чтобы отличить их от "инфекционных" антител, образующихся в течение текущей болезни, реакцию ставят в динамике, т. е. исследуют сыворотку больного, взятую повторно через 5-7 дней. Повышение титра антител говорит о наличии болезни - титр "анамнестических" антител не повышается, а может даже снизиться.

Контрольные вопросы

1. Что такое реакции иммунитета, каковы их основные свойства?

2. Какие компоненты участвуют в серологических реакциях? Почему реакции называют серологическими, из скольких фаз они состоят?

3. Что такое реакция агглютинации? Ее использование и методы проведения. Что такое диагностикум?

4. Каким антигеном пользуются при исследовании сыворотки больного? Какой сывороткой определяют вид неизвестного микроба?

5. Что такое О- и Н-агглютинация? В каких случаях образуется хлопьевидный осадок и когда мелкозернистый?

Задание

1. Поставьте развернутую реакцию агглютинации для определения титра антител в сыворотке больного и учтите ее результат.

2. Поставьте реакцию агглютинации на стекле для определения вида выделенного микроорганизма.

Реакция гемагглютинации

В лабораторной практике пользуются двумя различными по механизму действия реакциями гемагглютинации (РГА).

Первая РГА относится к серологическим. В этой реакции эритроциты агглютинируются при взаимодействии с соответствующими антителами (гемагглютининами). Реакцию широко используют для определения групп крови.

Вторая РГА не является серологической. В ней склеивание эритроцитов вызывают не антитела, а особые вещества, образуемые вирусами. Например, вирус гриппа агглютинирует эритроциты кур и морских свинок, вирус полиомиелита - эритроциты барана. Эта реакция позволяет судить о наличии того или иного вируса в исследуемом материале.

Постановка реакции. Реакцию ставят в пробирках или на специальных пластинах с лунками. Исследуемый на наличие вируса материал разводят изотоническим раствором от 1:10 до 1:1280; 0,5 мл каждого разведения смешивают с равным объемом 1-2% взвеси эритроцитов. В контроле 0,5 мл эритроцитов смешивают с 0,5 мл изотонического раствора. Пробирки ставят в термостат на 30 мин, а пластины оставляют при комнатной температуре на 45 мин.

Учет результатов. При положительном результате реакции на дне пробирки или лунки выпадает осадок эритроцитов с фестончатыми краями ("зонтик"), покрывающий все дно лунки. При отрицательном результате эритроциты образуют плотный осадок с ровными краями ("пуговку"). Такой же осадок должен быть в контроле. Интенсивность реакции выражают знаками "плюс". Титром вируса является максимальное разведение материала, в котором происходит агглютинация.