Кровь выполняет следующие функции транспортную. Каковы основные функции крови? Система крови и её функции

–жидкость весьма загадочная, ученые до сих пор разгадывают тайны функций крови в организме человека , а некоторые болезни крови или органов кроветворения (костный мозг) способны буквально «сжечь» человека за считанные недели и месяцы.

Кровь циркулирует по кровеносным сосудам, перенося газы (в частности кислород) и другие растворенные вещества (например, попадающие в нее из усвоенной пищи), необходимые для обменных процессов. Кровь выполняет в организме колоссальное количество функций, поэтому-то от ее состояния так сильно зависят самочувствие и . Однако мы очень редко задумываемся об этом, частенько едим и пьем, что придется, а потом удивляемся: откуда это вдруг появилась ?! Не пора ли уже взяться за ум, как вы считаете? Но чтобы действовать осознанно, необходимо получить представление о том, что же представляет собой кровь.

Эта известная фраза, как ни странно, не является полностью справедливой. Доля воды (а вернее плазмы – прозрачной жидкости бледно-желтого цвета) в крови составляет – 55%, то есть больше половины. Остальные 45% занимают клетки крови: красные (эритроциты), белые (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента – гемоглобина. В артериях, по которым кровь поступает в сердце из легких, переносится ко всем тканям организма, насыщен кислородом и окрашен в ярко-красный цвет. В венах, по которым кровь возвращается в сердце из тканей, практически лишен кислорода и заметно темнее по цвету (потом кровь попадает в легкие, насыщается кислородом, вновь обретая алый цвет).

Плазма представляет собой водный раствор отрицательно и положительно заряженных частиц (ионов небезызвестных вам калия, натрия, магния, хлора и прочих, причем качественный и количественный состав этих ионов максимально близок к составу морской воды), питательных веществ, разных белков, продуктов обмена веществ, витаминов, гормонов. На их долю приходится не более 10%, остальное составляет вода.

Анатомия крови

Клетки крови образуются в органах кроветворения, к которым относятся костный мозг, лимфатические узлы, вилочковая железа, селезенка. Процесс образования кровяных клеток (гемопоэз) постоянно контролируется, и количество клеток каждого типа регулируется в индивидуальном порядке, соответственно меняющимся потребностям организма. Давайте разберемся, чем занимаются и за что отвечают эритроциты, лейкоциты и тромбоциты.

Основную массу клеток, циркулирующих в крови, составляют эритроциты . Они очень плотно заполнены гемоглобином и по структуре очень отличаются от других клеток. «Живут и работают» эритроциты в кровеносных сосудах, перенося кислород и углекислый газ. Благодаря этим клеткам мы можем дышать в полном смысле этого слова.

Лейкоциты являются главными защитниками от всевозможных инфекций, также они перерабатывают остатки разрушенных клеток и т.п., проникая для этого в ткани организма через стенки небольших кровеносных сосудов. Лейкоциты в свою очередь подразделяются на гранулоциты, моноциты и лимфоциты. Все эти клетки различаются между собой размерами, функцией и местом образования.

Гранулоциты бывают трех видов:

Нейтрофилы – захватывают, убивают и переваривают чужеродные микроорганизмы (в особенности бактерии);

Базофилы – выделяют гистамин, участвующий в воспалительных и аллергических реакциях;

Моноциты выходят из кровяного русла, становясь макрофагами, и наряду с нейтрофилами обезвреживают бактерии. Правда, макрофаги значительно крупнее, да и куда более живучи.

Лимфоциты осуществляют иммунологическую защиту, они представлены двумя большими классами:

В-лимфоциты – производят анти-тела;

Т-лимфоциты – убивают клетки, инфицированные вирусом, и регулируют и координируют активность других лейкоцитов.

Кроме того, существует еще один тип клеток, похожих на лимфоциты, которые способны самостоятельно уничтожать некоторые виды опухолевых и инфицированных вирусами клеток. За свои способности они получили грозное название: природные киллеры .

Тромбоциты являются клеточными фрагментами особых клеток мегакариоцитов, которые обитают в костном мозге. Они циркулируют по всем кровеносным сосудам и их основная функция – участие в свертывании крови. Тромбоциты прилипают к поврежденным местам кровеносных сосудов и восстанавливают их стенки.

Кровь – это довольно-таки вязкая жидкость, и вязкость ее определяется содержанием эритроцитов и растворенных белков. От этой характеристики зависит скорость, с которой она протекает по сосудам. На реологические свойства крови влияют также ее плотность и характер движения эритроцитов и лейкоцитов. Первые, например, могут перемещаться как по отдельности, так и группами, напоминающими аккуратную стопку монет, создавая быстрый поток в центре сосуда. Вторые обычно движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов.

И питает, и защищает

Давайте подведем итоги, каковы же . Итак, кровь:

Осуществляет перенос газов, кислорода и диоксида углерода, обеспечивая процесс дыхания;

Доставляет питательные вещества, которые всасываются в кишечнике, к печени и другим органам, участвуя таким образом в обмене веществ;

Переносит гормоны и другие важные вещества, регулируя этим многие процессы в организме;

Защищает наш организм от чужеродных молекул и клеток, проникающих в него;

Поддерживает водный баланс между кровеносной системой, клетками (внутриклеточным пространством) и внеклеточной средой.

Кроме того, при повреждении кровеносных сосудов кровь сворачивается, закупоривая их, и препятствует кровопотере.

Для контроля состояния крови, отслеживания ее способности выполнять свои многочисленные, жизненно-важные функции, существуют разнообразные анализы. Исследование крови – одна из самых информативных процедур диагностики. Анализы крови отражают состояние всех систем организма, по ним можно выявить скрытые инфекции, нарушения иммунной системы, предрасположенность к аллергии, сбои в работе органов выделения, а также ряд других показателей. На основе результатов анализов крови врач может подобрать адекватное , и после его проведения обязательно назначается повторный анализ, для определения эффективности лечения.

В зависимости от целей, которые ставит врач, им могут быть назначены клинический, биохимический, иммунологический анализ крови. Например, иммуноферментный анализ крови позволяет на молекулярном уровне определить, где именно в иммунной системе происходит сбой. С его помощью можно выявить такие серьезные заболевания, как системная красная волчанка и ревматоидный артрит.

Биохимический анализ крови показывает объективную картину обменных процессов. Скажем, определив уровень холестерина, можно оценить вероятность развития атеросклероза. По уровню глюкозы в крови можно выявить на ранней стадии . Кроме того, есть и такие болезни, выявить которые можно только изучив кровь (например, лейкоз).

В одной из следующей статье мы вернемся к теме интерпретации анализов.

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Кровь является главным транспортировщиком всех микроэлементов в организме человека, поэтому ее транспортная функция является главной, так как заключается в обеспечении непрерывного перемещения питательных микроэлементов от органов пищеварения: печени, кишечника, желудка – к клеткам. Иначе ее еще называют трофической функцией крови. Транспортировка кислорода от легких к клеткам и углекислого газа в обратном направлении, иначе называется дыхательной функцией крови.

Кровь стабилизирует температуру клеток, перемещая тепловую энергию, поэтому ее терморегуляторная функция является одной из важнейших. Около 50% всей энергии организма человека преобразуется в тепло, которое вырабатывается печенью, кишечником и мышечными тканями. И именно благодаря терморегуляции одни органы не перегреваются, а другие не замерзают, так как кровь перемещает тепло во все клетки и ткани. Любые нарушения, происходящие в соединительной ткани, приводят к тому, что периферийные органы не получают тепло и начинают мерзнуть. Чаще всего такое наблюдается при анемии, кровопотери.

Защитная функция крови выражается благодаря наличию в составе межклеточного вещества лейкоцитов – иммунных клеток. Заключается в предотвращении возникновения критического увеличения уровня токсических веществ в клетках. Попадающие внутрь вирусные микроорганизмы уничтожаются защитной системой. При ее нарушении организм становится слабым для противостояния инфекциям, и, соответственно, защитная функция крови не может проявить себя в полной мере.

Кровь отвечает за поддержание постоянства внутренней среды организма, в первую очередь кислотного и водно-солевого балансов, в этом проявляется ее гомеостатическая функция. Поддерживается осмотическое давление, ионный состав тканей. Лишнее количество одних веществ удаляется из клеток, а другие вещества заносятся межклеточным веществом. Также благодаря данной функции кровь способна сохранять свои постоянные свойства.

Гуморальная или регуляторная функция связана с деятельностью эндокринной железы. Щитовидная, половая, поджелудочная железы вырабатывают гормоны, а межклеточное вещество транспортирует их в нужные места. Регуляторная функция важна, так как контролирует кровяное давление и нормализует его.

Экскреторная функция – отдельный вид транспортной функции крови, ее суть состоит в удалении конечных продуктов обмена (мочевины, мочевой кислоты), лишней жидкости, минеральных микроэлементов.

Гомеостаз является важной функцией крови. При, вен, артерий и появлении кровотечения в месте травмирования образуется кровяной сгусток, препятствующий сильной кровопотере.

Элементы кровеносной системы

Кровь представляет собой систему, которая состоит из определенных элементов, связанных друг с другом. Основные ее элементы:

  • циркулирующая кровь, или периферическая;
  • депонированная кровь;
  • органы кроветворения;
  • органы разрушения.

Циркулирующая перемещается по артериям и прокачивается сердцем. составляет примерно 5-6 л, но лишь 50% от этого объема циркулирует в состоянии покоя.

Депонированная представляет собой запасы крови в печени и селезенке. Ее выбрасывают органы в сосудистую систему при физических или эмоциональных нагрузках, когда мозг и мышцы нуждаются в повышенном количестве кислорода и питательных микроэлементов. Она нужна при непредвиденных кровотечениях. При наличии патологии печени и селезенки запасы значительно уменьшаются, что несет определенную опасность для человека.

Следующий элемент системы – орган кроветворения, к которому относится, находится в тазовых костях и концах трубчатых костей конечностей. В этом органе образуются лимфоциты и эритроциты, а в лимфоузлах – некоторые иммунные клетки. Частью системы являются органы, в которых кровь распадается. Например, в селезенке утилизируются красные кровяные тельца, в легких – лимфоциты.

Все эти части системы влияют на здоровье крови в организме человека. Поэтому необходимо следить за ее состоянием, за состоянием органов, ведь кровь выполняет жизненно важные физиологические функции для внутренних органов и тканей.

- это комбинация плазмы (водянистая жидкость) и клеток, которые плавают в ней. Это специализированная телесная жидкость, которая снабжает наши клетки необходимыми веществами и питательными веществами, такими как сахар, кислород и гормоны, и переносит их из этих клеток в нужные органы. Эти отходы в конечном итоге вымываются из организма с мочой, фекалиями, и через легкие (углекислый газ). Кровь также содержит свертывающие агенты.

Плазма составляет 55% от жидкости крови у людей и других представителей позвоночных.

Помимо воды, плазма также содержит:

  • Клетки крови
  • Углекислый газ
  • Глюкоза (сахар)
  • Гормоны
  • Белки

Кровь и типы клеток

  • Красные кровяные тельца - также известные как эритроциты. Они имеют форму слегка отступов, сплюснутых дисков. Это самые распространенные клетки и содержат гемоглобин (Hb или Hgb).

Гемоглобин - это белок, содержащий железо. Он переносит кислород из легких в ткани и клетки организма. 97% содержимого эритроцитов человека - это белок.

Каждый эритроцит имеет продолжительность жизни около 4 месяцев. В конце жизни они деградируют селезенкой и клетками Купфера в печени. Тело постоянно заменяет те, которые создаются.

  • Белые клетки крови (лейкоциты) - это клетки нашей иммунной системы . Они защищают организм от инфекций и посторонних тел. Лимфоциты и гранулоциты (типы лейкоцитов) могут перемещаться внутри и из кровотока, чтобы достичь пораженных участков ткани.

Лейкоциты также будут бороться с аномальными клетками, такими как раковые клетки.

Обычно количество кровяных клеток в одном литре крови у здорового человека равняется 4*10^10.

  • Тромбоциты - участвуют в свертывании крови (коагуляции). Когда человек истекает кровью, тромбоциты собираются вместе, чтобы сформировать сгусток и остановить кровотечение.

При воздействии воздуха к тромбоциту они высвобождают фибриноген в кровоток, что приводит к реакциям, которые приводят к свертыванию крови, например, на кожной ране. Образуется парша.

Когда гемоглобин окисляется, кровь человека ярко-красная.

Сердце накачивает кровь по всему телу через кровеносные сосуды. Кровеносная артериальная кровь, обогащенная кислородом, переносится из сердца в остальные части тела, и, нагруженная углекислым газом (венозная кровь), возвращается в легкие, где выдыхается углекислый газ. Углекислый газ - это отходы, образующиеся клетками во время метаболизма.

Что такое гематология?

Гематология - это диагностика, лечение и профилактика заболеваний крови и костного мозга, а также иммунологическая, свертывающая кровь (гемостатическая) и сосудистая системы. Врач, специализирующийся на гематологии, называется гематологом.

Функции крови

  • Поставляет кислород в клетки и ткани.
  • Поставляет необходимые питательные вещества в клетки, такие как аминокислоты, жирные кислоты и глюкозу.
  • Переносит углекислый газ, мочевину и молочную кислоту в органы выделения
  • Белые кровяные тельца имеют антитела, которые защищают организм от инфекций и посторонних тел.
  • Имеет специализированные клетки, такие как тромбоциты, которые помогают крови свёртываться (коагулировать) при кровотечениях.
  • Транспортирует гормоны - химические вещества, высвобождаемые клеткой в одной части тела, которая отправляет сообщения воздействующие на клетки в другой части тела.
  • Регулирует уровень кислотности (рН).
  • Регулирует температуру тела. Когда погода очень жаркая или во время интенсивных упражнений будет увеличен приток крови к поверхности, что приведет к более теплой коже и более высокой теплопотери. Когда температура окружающей среды падает, кровоток фокусируется больше на жизненно важных органах внутри тела.
  • Он также имеет гидравлические функции - когда человек сексуально возбуждается, наполнение (заполнение области кровью) приведет к мужской эрекции и припухлости клитора женщины.

Клетки крови вырабатываются в костном мозге

В костном мозге появляются белые клетки, эритроциты и тромбоциты - желеобразное вещество, которое заполняет полости костей. Костный мозг состоит из жиров, крови и специальных клеток (стволовых клеток), которые превращаются в различные типы клеток крови. Основные области костного мозга, участвующие в образовании клеток крови, находятся в позвонках, ребрах, грудине, черепе и бедрах.

Есть два типа костного мозга, красный и желтый . Большинство наших красных

и белых клеток крови, а также тромбоциты появились в красном костном мозге.

Клетки крови у младенцев и маленьких детей производятся в костном мозге в большинстве костей в организме. По мере того, как мы становимся старше, часть костного мозга превращается в желтый костный мозг, и только кости, составляющие позвоночник (позвонки), ребра, таз, череп и грудина содержат красный костный мозг.

Если человек испытывает сильную потерю крови, организм способен превращать желтый костный мозг обратно в красный мозг, поскольку он пытается увеличить производство клеток крови.

Группы крови


У людей может быть одна из четырех основных групп крови:

  • α и β: первая (0)
  • A и β: вторая (A)
  • B и α: третья (B)
  • A и B: четвёртая (AB)и с RH положительная, либо отрицательная

Человеческий организм устроен крайне сложно. Элементарной строительной частицей его является клетка. Объединение клеток, схожих по своему строению и выполняемым функциям, образует определенный вид ткани. Всего в человеческом организме выделяют четыре вида тканей: эпителиальная, нервная, мышечная и соединительная. Именно к последнему виду и относится кровь. Ниже в статье будет рассмотрено, из чего состоит.

Общие понятия

Кровь является жидкой соединительной тканью, которая постоянно циркулирует от сердца во все отдаленные отделы человеческого организма и реализует жизненно значимые функции.

У всех позвоночных организмов она имеет красный цвет (разной степени интенсивности окраски), приобретаемый вследствие наличия гемоглобина, специфического белка, ответственного за перенос кислорода. Роль крови в организме человека невозможно преуменьшить, поскольку именно она отвечает за перенос в нем питательных веществ, микроэлементов и газов, нужных для физиологического протекания процессов клеточного обмена.

Основные составляющие

В строении крови человека присутствуют два главных компонента – плазма и размещенные в ней форменные элементы нескольких видов.

Вследствие центрифугирования можно увидеть, что – это прозрачный жидкий компонент желтоватого цвета. Ее объем достигает 52 – 60% всего кровяного объема. Состав плазмы в крови представлен на 90% водой, где растворены белки, неорганические соли, питательные вещества, гормоны, витамины, ферменты и газы. И так из чего состоит кровь у человека.

Клетки крови бывают следующих видов:

  • (красные кровяные тельца) – содержится больше всего среди всех клеток, их значение состоит в транспорте кислорода. Красный цвет объясняется наличием в них гемоглобина.
  • (белые клетки крови) – часть иммунной системы человека, осуществляют его защиту от патогенных факторов.
  • (кровяные пластинки) – гарантируют физиологическое протекание свертываемости крови.

Тромбоциты являются бесцветными пластинками, лишенными ядра. Фактически – это фрагменты цитоплазмы мегакариоцитов (клеток-гигантов в костном мозге), которые окружены клеточной мембраной. Форма тромбоцитов разнообразна – овальная, в виде сферы либо палочек. Функция тромбоцитов заключается в обеспечении свертываемости крови, то есть защиты организма от.

Кровь - это быстро регенерирующая ткань. Обновление форменных элементов крови проходит в органах кроветворения, главный из которых - расположенный в тазовых и длинных трубчатых костях костного мозга.

Какие задачи выполняет кровь

Выделяют шесть функций крови в организме человека:

  • Питательная – кровь доставляет от пищеварительных органов ко всем клеткам тела питательные вещества.
  • Выделительная – кровь забирает и уносит от клеток и тканей к органам выделения продукты распада и окисления.
  • Дыхательная – транспорт кислорода и углекислого газа.
  • Защитная – обезвреживание патогенных организмов и ядовитых продуктов.
  • Регуляторная – обусловлена переносом гормонов, которые регулируют обменные процессы и работу внутренних органов.
  • Поддержание гомеостазиса (постоянства внутренней среды организма) – температура, реакция среды, солевой состав и т.п.

Значение крови в организме огромно. Постоянство ее состава и характеристик обеспечивает нормальное протекание процессов жизнедеятельности. По изменению ее показателей можно выявить развитие патологического процесса на ранних этапах. Надеемся вы узнали, что такое кровь, из чего она состоит и как она функционирует в организме человека.

Главная » Жизнь » Какую роль в организме выполняет кровь. Общие свойства и функции крови

При поддержании регулярного про­цесса обмена веществ кровь выполняет многочисленные и разнообразные функции. Она участвует собственно во всех естественных, а также нарушен­ных жизненных процессах.

Например, закупорка желчных путей не является болезнью крови, но из-за увеличения поступления желчи в кровь и увеличе­ния содержания желчного пигмента в крови плазма приобретает выражен­ную желтизну, кровь «заболевает», ее обычный состав нарушается. Даже гнойная рана на мизинце может вы­звать нарушение общего состава крови, увеличение количества белых клеток и белков крови.

Необходимо различать следующие важнейшие функции крови:

— транспортную (для питательных ве­ществ, кислорода, продуктов обмена веществ, медикаментов, промежуточных продуктов и т.д.);
— информации (перенос гормонов и ферментов к месту воздействия, транспортировка активизирующих и тормозящих веществ);
— защитную (при помощи лейкоцитов от возбудителей болезней, инород­ных белков и других инородных тел);
— поддержания постоянной темпера­туры тела (за счет изменения при не­обходимости кровоснабжения кож­ного покрова и варьирования тепло­отдачи);
— самозащиты при помощи системы свертывания (для предотвращения при повреждениях большой потери крови и длительных кровотечений);
— сохранения постоянной внутренней среды и «внутреннего порядка» в ор­ганизме за счет регулирования вод­ного и электролитного хозяйства.

Кроме того, для врача кровь имеет кос­венную вспомогательную функцию: позволяющую по составу определить наличие заболеваний. Следовательно, это имеет дополнительное значение для диагностики.

Транспортировка кислорода
Транспортировка кислорода вдыха­емого воздуха во все части организма, ко всем его клеткам — одна из важней­ших задач крови. Хотя основную на­грузку в этом плане выполняет красное красящее вещество, гемоглобин, за­дачи транспортировки решают собст­венно и все остальные составные части крови. От постоянного состава солей в крови зависит, будет ли кислород в пол­ном объеме связываться гемоглоби­ном, или кровь будет заряжаться кисло­родом не полностью, что осложнит поступление этого важного горючего к клеткам.
При вдохе воздух, содер­жащий кислород, попадает в мельча­йшие легочные альвеолы, тесно связан­ные с кровеносными сосудами. Опре­деленное количество кислорода вдыха­емого воздуха под давлением газа вытесняется в плазму крови. Этот кис­лород немедленно поглощается гемо­глобином эритроцитов, связываясь в молекулах гемоглобина атомами железа, что позволяет остальному кислороду благодаря более высокому парциаль­ному давлению в легких поступать в плазму. Связывая кислород, красящее вещество крови изменяет свой цвет, становясь светло-красным. Обогащен­ный кислородом гемоглобин обладает более высокой кислотностью по срав­нению с обедненным, что имеет боль­шое значение для удаления из тканей также углекислого газа, связываемого гемоглобином.
Обогащенные кислородом эритроциты поступают во все ткани и органы чело­века. В капиллярах с диаметром, едва пропускающим клетки крови, эритро­циты тесно соприкасаются с тканью, имеющей более низкое кислородное давление, обусловленное расходом кислорода в процессе клеточного об­мена веществ. В соответствии с физическими (а точнее сказать и с химичес­кими) законами кислород из области с повышенной степенью концентрации перемещается в область с пониженным кислородным давлением, при этом хи­мические процессы способствуют освобождению связанного гемоглоби­ном кислорода. В этих тканях концен­трация углекислоты, являющейся про­дуктом обмена веществ выше, чем во вдыхаемом воздухе и в крови, поэтому, как бы в обмен на кислород, углекис­лота и ионы ее солей накапливаются в гемоглобине.
Насыщенные углекисло­той эритроциты венозным кровотоком переносятся в легкие, где вновь проис­ходит газообмен, в процессе которого легкими выдыхается углекислый газ и происходит «зарядка» новым кислоро­дом — весьма рационально организо­ванная транспортная система, исключа­ющая порожние рейсы.
Разумеется, в крови в соответствии с их парциальным давлением растворены и другие газы воздуха (например, азот). Однако они не связываются гемоглоби­ном, их доля в растворенном состоянии постоянно остается небольшой. При наличии в воздухе угарного газа (как со­ставной части газовой среды городс­кого воздуха или дыма от процесса го­рения) картина меняется. Угарный газ хорошо растворяется в крови. Он во много раз лучше кислорода связыва­ется гемоглобином. Для полного насы­щения гемоглобина угарного газа тре­буется значительно меньше, чем кисло­рода. Это означает, что при отравлении газом (городской среды или угарным) организм в достаточной мере не снаб­жается кислородом, ибо все валентно­сти занимает угарный газ. Происходит как бы внутреннее удушение орга­низма.
Этим объясняется опасность угарного газа, что сравнительно не­большой его концентрации достаточно для вытеснения кислорода. Представление об этих основополага­ющих процессах позволяет понять суть мер по оказанию помощи при отравле­нии газом. Например, бессмысленно делать искусственное дыхание в среде, наполненной угарным газом или в це­лях дегазации употреблять молоко. По­страдавшего необходимо немедленно вынести на свежий воздух, или доста­вить в больницу под кислородной мас­кой, так как при более высоком кисло­родном давлении и отсутствии во вдыхаемом воздухе угарного газа ге­моглобин как бы очищается, позволяя вновь осуществляться регулярной функции крови по транспортировке кислорода.

Полной насыщенности крови кислоро­дом может не происходить, если в лег­ких площадь газообмена слишком мала, например, при воспалении лег­ких или резком уменьшении коли­чества эритроцитов. Гемоглобин обладает удивительно вы­сокой способностью вступать в соеди­нения. Один грамм гемоглобина связы­вает максимум 1,4 миллилитра кисло­рода. Это означает, что 1 л крови, содержащий 150 г красного красящего вещества крови, вступает в соединение с 210 мл кислорода. В обогащенной кислородом крови содержится такое же количество О 2 , как и во вдыхаемом воздухе. Как известно, в воздухе содер­жится 21 % кислорода, т.е. также 210 мл на 1 л воздуха. «Плохой», т.е. имеющий низкое содер­жание кислорода воздух, препятствует насыщению кислородом крови, а зна­чит и снабжению им систем организма. Следует обратить внимание и на тот факт, что воздух, содержащий угарный газ, вдыхается и в процессе курения. Курильщик втягивает в себя не только никотин и вещества, способствующие возникновению рака, но и вдыхает низ­косортный воздух, в значительной сте­пени содержащий угарный газ. Опре­деленный процент гемоглобина куриль­щика постоянно связан угарным газом и не участвует в транспортировке кис­лорода. Для организма эта нагрузка сравнима с постоянным проживанием курильщика в окружении «тонкого» слоя воздуха на высоте около 2000 ме­тров.

Транспортировка других питательных веществ
Кровь осуществляет транспортировку всасываемых кишечником из пищи в процессе пищеварения питательных ве­ществ. При помощи кровотока это го­рючее, необходимое для клеточного обмена веществ, поступает в печень и большей частью преобразуется в ней. Иногда оно длительное время нахо­дится в крови, что относится как к жирам, присутствующим в крови в виде мельчайших капелек, так и к аминокис­лотам — стройматериалу для белков, а также к глюкозе — сахару крови. Обычно определенная концентрация сахара в крови не изменяется. При больших затратах энергии (например, в результате физической нагрузки) из мест накопления (мышцы, печень) кос­венным путем высвобождается и посту­пает в кровь новый сахар. При повыше­нии уровня сахара в крови после приема пищи (у здорового человека) это увеличенное количество преобразу­ется в формы накопления (гликогены) и жиры, чтобы использоваться в случае необходимости.

Любая проба на состав крови напоми­нает небольшую инвентаризацию, про­верку состояния и возможностей транспортировки на данный момент, а не фактически имеющихся резервов. Так у очень худого человека после приня­тия пищи в крови может быть обнару­жено увеличенное содержание жиров, в то же время кровь человека, страда­ющего избыточным весом в момент физической нагрузки может показать наличие исключительно малого коли­чества жиров. В большинстве случаев повторные пробы берутся с целью под­тверждения результатов разового ана­лиза.

Описанное выше относится и к транс­портировке других веществ, обнаружи­ваемых в крови. Например, после приема лекарственных препаратов, может отмечаться очень высокий уровень ме­дикаментов в крови. Однако, после того как произойдет их накапливание в органах и тканях, степень концентра­ции в крови понижается, хотя медикаменты и остаются в организме. Подобная картина наблюдается и с ядами. Они могут полностью исчезнуть из крови, накопившись, однако, в зна­чительном количестве в органах. Ибо глядя на товарный поезд, нельзя ска­зать каков выбор товаров в магазине.
Часто приходится слышать, что холестерол (холестерин) и другие жиры крови — это шлаки обмена веществ, которые подоб­но мусору на свалке откладываются на стенках сосудов организма, вызывая тем самым атеросклероз и артериаль­ное обызвествление. Это мнение не со­ответствует действительности. Как пра­вило, жиры крови — это склад энергосодержащих питательных веществ. При оценке анализов крови необхо­димо постоянно принимать во внима­ние ее транспортную функцию. Выше­названные факты наглядно подтвержда­ются при проведении исследований с использованием радиоактивных ве­ществ. В ходе таких исследований с точностью можно определить, с какой быстротой определенное вещество растворяется и распределяется в крови, где и как откладывается и исче­зает из нее.

Транспортировка конечных продуктов обмена веществ
Иногда все еще встречаются люди, пропагандирующие перед наступле­нием весны так называемый курс лече­ния «по очищению крови» для «удале­ния» из нее «шлаков». Они исходят из представления о том, что организм можно периодически освобождать от шлаков, наподобие вывоза мусора, очи­щения от «накипи» или «кучи пепла». Разумеется - это псевдонаучный под­ход. Образующиеся в процессе обмена веществ шлаки немедленно и постоянно выводятся из организма. Если в результате нарушения процесса вывода происходит их застой, в организме сразу же возникают опасные осложне­ния. В качестве примера можно приве­сти отравление вредными продуктами мочи (уремия), возникающее в резуль­тате нарушения выводящий функции почек. Многие подобные шлаки с кро­вью поступают к выводящим орга­нам. Отмирающие эритроциты освобож­дают гемоглобин, который, преобразу­ясь в желчные пигменты, поступает в печень, желчные пути и кишечник. Причем этот желчный сок — продукт экономии человеческого организма — осуществляет функцию переваривания пищи. В крови постоянно содержится определенная часть этого распадающегося гемоглобина (билиру­бин), перерабатываемого печенью.

При нарушении функции печени его уро­вень в крови повышается, что может привести к пожелтению склер и кожных покровов. Следовательно, доказа­тельством наличия чрезмерного коли­чества конечных продуктов обмена веществ, может являться расстройство функций органов. Поэтому один раз в год производить чистку крови для выве­дения шлаков невозможно. Всем сто­ронникам этого метода может быть дан отпор на основе знания основополага­ющих физиологических процессов пе­реноса веществ кровью. Кто понимает, что продукты обмена веществ постоянно образуются в орга­низме и последовательно выводятся из него, тот вряд ли попадает под влияние сомнительных советов в отношении ве­сенних чисток крови или других, не имеющих научной основы, курсов чудо-лечения.

Перенос информации
При перечислении заслуг транспорт­ной функции порой забывают весьма существенную «курьерскую службу», также выполняемую кровью. Речь идет о большом объеме информации по са­морегуляции жизненных процессов, связанных с концентрацией веществ в крови. Так из-за незначительной кон­центрации питательных веществ в крови вероятно происходит стимуляция работы центра голода, разумеется, что на этот процесс оказывают влияние и многие другие механизмы. Освобож­дение сахара из форм накопления, а также многие другие процессы регуля­ции, зависят от информации, поступа­ющей в кровь. Дыхательный центр также реагирует на концентрацию кис­лорода и углекислоты в крови, регули­руя глубину и частоту дыхания. Кроме решения подобных информационных задач кровь должна передавать еще и другую информацию.
При помощи крови гормоны желез внутренней се­креции доставляются адре­сату, т.е. к месту их воздействия. Тем самым кровь представляет собой как бы вторую нервную систему. Миллион­ной доли грамма гормона достаточно для того, чтобы активизировать обмен веществ, ускорить или замедлить ра­боту половых желез, вызвать рост во­лос, увеличение размеров тела и мно­гое другое. Все эти гормоны разносит по организму кровь. Без циркуляции крови эффективное воздействие гор­монов невозможно. Различные железы внутренней секреции связываются между собой кровотоком, что позво­ляет им оказывать друг на друга взаим­ное воздействие.
Например, железа ги­пофиза выделяет гормон, активизиру­ющий деятельность коры надпочечника (адренокортикотропный гормон ) и вы­зывающий в свою очередь производст­во ее гормонов (кортикоидов ). Накапли­ваясь в крови, они оказывают обратное влияние на железу гипофиза. В этом случае она перестает выделять или вы­деляет небольшое количество гормо­нов, воздействующих на активность коры надпочечника. Осуществление подобной регуляции и обратных связей возможно лишь при помощи крови. Это очень важная информационная и регулирующая деятельность.
Такое свойство крови также использу­ется врачом при лечении различных за­болеваний. Ведь поступая в кровоток (например в вену руки), медикаменты способны вызвать эффект в органах, находящихся совершенно в иной части тела, даже в самой отдаленной.

Защитная функция крови
В популярном сравнении белые клетки крови иногда называют «полицией» ор­ганизма. Это сравнение полностью со­ответствует действительности, если учитывать, что полиция не только обез­вреживает и изолирует нарушителей порядка, но и решает задачи предуп­реждения нарушений и регулирования движения.

Защитная функция крови по отноше­нию к таким нарушителям как ми­кробы, инородные вещества, изменен­ные белки и др. осуществляется, с одной стороны, воздействием раство­ренных в крови специфических защит­ных веществ (антител ), не ­специфических факторов крови (напри­мер, интерферон) и лейкоцитов (нейтрофильных гранулоцитов). Окружая «пожирающими клетками» (фагоци­тами ) проникнувшие бактерии или инородные клетки (например, ино­родные эритроциты) и втягивая их внутрь они таким образом усваивают их. При этом белые клетки крови поги­бают. Подвергаясь жировому перерож­дению, они в миллионном количестве образуют гнойные клетки, совместно с другими клетками и выделениями из раны, поэтому нагноение всегда озна­чает конфликт между лейкоцитами и инородными нарушителями. При по­беде лейкоцитов они уничтожают и вы­водят болезнетворные микробы. Если же белые клетки крови и другие защит­ные механизмы не одерживают верх над проникшими бактериями, возни­кает сепсис , («заражение крови») и рас­пространение возбудителей по всему организму. Химические вещества (лейкотаксины ) действуют на лейкоциты как приманка или сигнал тревоги. Появля­ясь в очаге воспаления, эти лейкотаксины привлекают из капилляров окру­жения гранулоциты, которые, скаплива­ясь у очага воспаления (образование гнойника), начинают свое защитное «сражение» (созревание гнойника). Уничтоженные нарушители и отмер­шие клетки крови затем выводятся из организма с гноем («прорыв» гной­ника).

Вмешиваясь в подобную защит­ную борьбу, выдавливая еще «несоз­ревший» нарыв, вскрывая его кончиком иглы или другим подсобным инстру­ментом, можно рассеять в окружении раны ещё не уничтоженные возбуди­тели гноя, которые, попадая по лимфа­тическим путям в другие области ткани, вызовут расширение района вос­паления. Этим объясняются постоян­ные предостережения врача — не пре­дпринимать самостоятельно никаких манипуляций с гнойником!
Тепловое воздействие способствует улучшению кровоснабжения и обмена веществ. Локальное прогревание вызы­вает увеличение количества лейкоцитов в районе очага и повышает их «аппе­тит». Под воздействием тепла гнойник созревает быстрее, однако при этом могут возникнуть значительные разру­шения тканей. Нельзя рекомендовать использовать лишь тепло или только хо­лод. Воздействие холода позволяет за­медлить воспалительный процесс, огра­ничить или совсем прекратить образование гноя, однако, в зависимости от обстоятельств может продолжаться распространение и размножение про­никших возбудителей. Наряду с названными белыми клетками крови (гранулоцитами) в ней имеются вещества, не целенаправленно препятствующие размножению бактерий. Они еще не до конца изучены.
Лишь не­давно открыт интерферон — вещество, препятствующее, например, размно­жению вирусов. Его выделяют клетки, поражаемые вирусами. Оно поступает к другим клеткам с кровотоком или лимфой, защищая их от поражения ви­русами. В крови есть и другие защит­ные вещества, однако каждого из них недостаточно, чтобы воспрепятствовать размножению микробов. Особую роль в защитной функции крови играют лимфоциты — вторая по величине группа белых клеток крови. Они не действуют как фагоциты, окру­жая и обезвреживая, проникшие возбу­дители. В последние годы они стали предметом особенно интенсивных исследований, т.к. в общем комплексе иммунной защиты занимают ключевую позицию.
Лимфоциты различным обра­зом принимают участие в создании определенных специфических антител, имеющих целевую направленность про­тив отдельных белковых веществ.
Функ­ция производства антител лимфоци­тами была известна уже несколько десятков лет назад. Предметом же им­мунологических исследований за по­следнее время стал вопрос о том, как же все-таки эти клетки распознают свой «антиген», как различают они чуж­дые и родственные для организма ве­щества, как «вспоминают» об опреде­ленных инородных телах, как могут за короткое время производить большое количество специфических защитных веществ. В особой мере эти исследова­ния стимулировались еще и связью с проблемой трансплантации органов, ибо производящие антитела лимфо­циты играют не только «позитивную» роль, уничтожая микробы и тем самым предупреждая или устраняя инфек­ционные болезни. У них есть и «нега­тивная» роль, проявляющаяся в уничто­жении инородных белков, т.е. чуждых донорских органов. Кроме того, они могут ошибаться и неожиданно прини­мать вещества своего организма за инородные.

Теплообмен
«Ты — само здоровье!» — охотно гово­рят, льстя розовощекому и как бы пышащему здоровьем собеседнику. Блед­ный же цвет лица, напротив, вызывает опасения за состояние здоровья. Для опытного врача при постановке диагноза внешний вид кожного покро­ва имеет определенное значение. Блед­ность действительно может означать не­достаток крови, слабость кровообраще­ния, болезнь почек и т.д.
Но кровоснаб­жение кожных покровов зависит и от многих других факторов — оно не только обеспечивает снабжение кровью кожи, но и за счет отражения тепла всей по­верхностью тела регулирует темпера­туру в организме. Если бы тепло не до­ставлялось кровотоком к поверхности тела, то возникая постоянно в процессе сгорания при обмене веществ всех клеток могло бы вызвать «подогрев» внутри организма на 1-10 °С в час. Данный фактор играет роль при тепло­вом ударе, т.е. нарушении терморегу­ляции и кровообращения на жаре. В таких условиях — перегретый организм перестает выделять тепло. Если не предпринять своевременного вмешательства с целью понижения темпера­туры тела и восстановления кровообра­щения (обливание холодной водой, холодовые клизмы) может возникнуть серьезная угроза для жизни.
В связи с этим необходимо напомнить о воздействии алкоголя. Наряду со мно­гими эффектами алкоголь даже в небольших дозах вызывает потерю сосу­дами способности реагировать на из­менения, происходящие в организме. Кровеносные сосуды кожных покровов остаются расширенными за счет улуч­шения кровоснабжения, этим и объясня­ется тепловой удар при принятии на жаре спиртного, которое многие еще считают профилактическим средством от простудных заболеваний.

Значение анализа крови для диагностики
Часто врачи прибегают к исследованию крови. Многочисленные пробы крови вызывают у некоторых пациентов даже опасения за её количественный состав. Такая озабоченность необоснованна, ибо забираемое для исследований ко­личество крови в каждом отдельном случае всегда очень мало, чтобы повли­ять на процесс кроветворения. Такое количество быстро восстанавливается организмом.

Исходя из степени концентрации раз­личных веществ в крови, можно сде­лать вывод о наличии и протекании бо­лезни в организме, но при этом необходимо учитывать, что пока­затели отражают их уровень в крови на данный момент взятия пробы. Для уточнения диагноза необходимо прове­дение динамических исследований. Во всех существующих методах исследо­вания крови невозможно рассказать даже кратко. Однако ниже мы останав­ливаемся на некоторых наиболее важ­ных из них.

Реакция оседания эритроцитов (РОЭ)
К этому методу исследования врачи прибегают довольно часто. Он пред­ставляет собой простую проверку воз­можных нарушений нормального со­става крови, в особенности количества ее белков. Из вены руки берутся 2 мл крови, теряющей свертываемость в ре­зультате воздействия цитратного раст­вора. Эту пробу крови помещают в гра­дуированную пробирку, где находящи­еся во взвешенном состоянии клетки крови начинают постепенно оседать. Показатели скорости оседания фикси­руют через один и два часа. Как пра­вило, клеточная взвесь оседает на не­сколько мм в час. Белки и электрический заряд составных частей крови, имеющих форму, поддерживают клетки во взвешенном состоянии. При уменьшении количества или измене­нии состава белков за счет белковых фракций антител процесс оседания клеток крови происходит значительно быстрее. Идентичный эффект происхо­дит и при наличии слишком малого ко­личества красных кровяных клеток. Эти изменения могут наступать в крови при всевозможных воспалениях, повышен­ной температуре, заболеваниях почек, опухолях, болезни печени и др. орга­нов.
На основании лишь одного уско­ренного оседания клеток нельзя еще ставить диагноз — это всего лишь неспецифическая проверка. При сильном отличии ее показателей от нормы сле­дует искать причину отклонений, но даже при нормальных показателях воз­можность наличия определенных бо­лезней исключать нельзя. Если не вмешиваться в процесс оседания клеток в пробирке до тех пор, пока они все не осядут на дно, можно сделать вывод о соотношении клеток крови и плазмы. Как правило, на долю клеток прихо­дится 45% общего объема крови. Если эритроцитов слишком мало (анемия), граница клеток в пробирке будет про­ходить ниже обычного. Результаты можно получить гораздо быстрее, если обрабатывать маленькие пробирки с кровью на центрифуге (гематокрит) или измерять содержание гемоглобина в крови (показатель гемоглобина).

Картина крови
Небольшую каплю крови, помещают на предметное стекло, размазывая и за­тем обрабатывая различными раство­рами красителя. Под микроскопом определяется количество и внешний вид различных белых клеток крови, а также аномалии красных клеток, сосчи­тываются виды клеток и определяется их процент.
При острых воспалительных процессах увеличивается число нейтрофильных гранулоцитов;
при хро­нических воспалениях количество лим­фоцитов;
аллергические заболевания могут быть связаны с увеличением эозинофильных клеток.
Для диагностики важное значение имеют показатели не­типичных, незрелых клеток крови, так, например, сильное увеличение коли­чества белых клеток крови может сви­детельствовать о белокровии, т.е. лей­кемии или лейкозе. Разумеется, однако, что при постановке диагноза врач руководствуется не только показа­телями картины крови.

Количество клеток
Иногда для решения ряда вопросов не­обходимо определить общее количест­во клеток крови (разумеется, при этом не производится подсчет биллионов от­дельных эритроцитов), для чего неболь­шую счетную камеру известного объ­ема заполняют кровью. Камера имеет штрихи, позволяющие сосчитать коли­чество клеток в определенном объеме. Затем данные измерений переводятся на 1 мм 3 .

Группы крови
Иногда на средневековых гравюрах и рисунках храбрые воители изображены с ягненком за спиной, который должен был выполнять роль донора в случае ра­нения. То была излишняя обуза, ибо кровь любого животного не может за­менить кровь человека. Весьма раз­ными были также результаты первых опытов передачи крови от человека че­ловеку. Очевидные успехи чередова­лись с неудачами, имевшими смертель­ный исход. На рубеже ХХ века удалось доказать, что кровь человека имеет различные группы, смешивать которые нельзя.

Вначале австрийцем Ландштайнером были описаны четыре группы крови че­ловека А, В, АВ и 0.
У людей с группой крови А в плазме содержатся антитела со свойствами Анти-В. Если пациенту с группой крови А влить донорскую кровь группы В, то свойства Анти-В его крови вызовут немедленное свертыва­ние донорских клеток, а содержащиеся в донорской крови свойства Анти-А раз­рушат клетки крови реципиента.
В плазме группы крови 0 содержатся как свойства Анти-А, так и свойства Анти-В.
Открытие Ландштайнера означало огромный шаг вперед в развитии меди­цины. Собственно оно и позволило на­чать осуществление переливания крови. Однако случаи неудачного ис­хода продолжали встречаться. Лишь в 1940 году удалось получить доказатель­ство наличия других свойств в группах крови, названных системой резусов (резус-положительный или резус-отри­цательный), что позволило более эф­фективно решать вопрос совместимо­сти донорской крови и крови реципи­ента.
Далее был открыт еще ряд закономерно наследуемых групп крови, что имело большое значение для судебной медицины. Для перелива­ния крови эти группы имеют второсте­пенное значение. Удалось до­казать, что не только красные кровяные клетки проявляют «свои» свойства сов­местимости, но и белые в отношении совместимости тканей также имеют определенные свойства (система HL-A). Изучение этих свойств создаст благо­приятные предпосылки для трансплан­тации органов. При переливании же крови они учитываются лишь в особых случаях.

Поэтому для переливания крови основ­ное значение имеет определение группы крови. Его в обязательном пор­ядке производят в больнице, что при необходимости позволяет быстро зака­зать нужную консервированную кровь. Оказанию помощи, например, при не­счастном случае способствует наличие в паспорте отметки о группе крови. Во избежание возможных ошибок перед каждым переливанием крови, несмо­тря на имеющееся определение группы крови, еще раз берется проба на совместимость.

Благодаря наличию тестов-сывороток определение групп крови произво­дится довольно просто. Мелкие капли крови наносят на пластинки с извест­ными антисыворотками. При отсутст­вии совместимости происходит свертывание клеток крови. Кровь группы А (наиболее часто встречающаяся), свер­нется при вступлении в реакцию с те­стами-сыворотками Анти-А и Анти-АВ. Интересен тот факт, что носители определенных групп крови чаще могут быть подвержены некоторым заболева­ниям, например, желудочно-кишеч­ным.
Отчасти это объясняется иммуно­логическими процессами.

1. Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве-ществ всех клеток тела. Красный цвет крови придает гемоглобин , содер-жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо-средственного контакта с внешней средой, их жизнедеятельность обеспе-чивается наличием внутренней среды (кровь, лимфа , тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма . Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом . Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров , базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг , лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

4) терморегуляторная - регуляция температуры тела путем охлаж-дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант гомеостаза: рН, осмотического давления, изоионии и т.д.;

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос-приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос-становительные (регенеративные) процессы в организме и ускоряют за-живление ран;

5) ферментативная - они содержат различные ферменты, необхо-димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора-дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле-ния генетическим аппаратом других клеток организма; путем таких меж-клеточных взаимодействий (креаторных связей) восстанавливается и под-держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле-мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа-метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги-гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо-цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со-бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве-ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при-сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина-ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо-цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме-жду кровью и тканевой жидкостью путем изменения проницаемости сте-нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра-нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П. Панченкова.

В норме СОЭ равна:

У мужчин - 1-10 мм/час;

У женщин - 2-15 мм/час;

Новорожденные — от 2 до 4 мм/ч;

Дети первого года жизни — от 3 до 10 мм/ч;

Дети возрастом 1-5 лет — от 5 до 11 мм/ч;

Дети 6-14 лет — от 4 до 12 мм/ч;

Старше 14 лет — для девочек — от 2 до 15 мм/ч, а для мальчиков — от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку-лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по-этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа-ния. Однако скорость оседания лейкоцитов в клинике во внимание не при-нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения.

Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста-новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением.

Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа.

Осуществляется в три фа-зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при-нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане-вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак-тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита-мина К и является проферментами, относящимися к глобулиновой фрак-ции белков плазмы. В активную форму - ферменты они переходят в про-цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци-ты, лейкоциты и тромбоциты. Прочность обра-зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве-ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер-тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей-коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги-рудин действует угнетающе на третью стадию процесса свертывания кро-ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще-ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре-вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обна-ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы-ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты.

Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю-тинин α, а также В и β называются одноименными. Склеивание эритроци-тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове-ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю-тинин.

Согласно классификации Я. Янского и К. Ландштейнера у людей име-ется 4 комбинации агглютиногенов и агглютининов, которые обозначают-ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино-ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со-держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По-этому людей с I группой крови называют универсальными донорами. Лю-дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе-реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь-ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те-рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю-тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя-желые осложнения. Поэтому людей с I группой крови, содержащих агглю-тинины анти-А и анти-В, сейчас называют опасными универсальными до-норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю-тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз-личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива-нии ее больным с I и III группами. Агглютиноген В тоже существует в не-скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К. Ландштейнер, выступая на церемонии вручения ему Но-белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит-роцитах человека обнаружено более 500 различных агглютиногенов. Толь-ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови.

Если же учитывать и все остальные агг-лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че-ловек имеет свою группу крови. Данные системы агглютиногенов отлича-ются от системы АВО тем, что не содержат в плазме естественных агглю-тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг-лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг-лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде-ляется неверно, и больным вводят несовместимую кровь.

Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос-тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег-коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на-зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О.

Особенностью резус-фактора является то, что у лю-дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра-батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро-ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен-трации антирезус-агглютининов может наступить смерть плода и выки-дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица-тельным женщинам назначают антирезус-гамма-глобулин, который ней-трализует резус-положительные антигены плода.